OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23873–23884

All-optical hash code generation and verification for low latency communications

Yvan Paquot, Jochen Schröder, Mark D. Pelusi, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23873-23884 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2435 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce an all-optical, format transparent hash code generator and a hash comparator for data packets verification with low latency at high baudrate. The device is reconfigurable and able to generate hash codes based on arbitrary functions and perform the comparison directly in the optical domain. Hash codes are calculated with custom interferometric circuits implemented with a Fourier domain optical processor. A novel nonlinear scheme featuring multiple four-wave mixing processes in a single waveguide is implemented for simultaneous phase and amplitude comparison of the hash codes before and after transmission. We demonstrate the technique with single polarisation BPSK and QPSK signals up to a data rate of 80 Gb/s.

© 2013 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.1155) Fiber optics and optical communications : All-optical networks

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 18, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 14, 2013
Published: September 30, 2013

Yvan Paquot, Jochen Schröder, Mark D. Pelusi, and Benjamin J. Eggleton, "All-optical hash code generation and verification for low latency communications," Opt. Express 21, 23873-23884 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill Higher Education, 2008).
  2. A. A. Bruen and M. A. Forcinito, Cryptography, Information Theory, and Error-Correction: A Handbook for the 21st Century (John Wiley & Sons, 2011).
  3. D. Russell, The Principles of Computer Networking (Cambridge University Press, 1989).
  4. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Select. Topics Quantum Electron. 12, 544–554 (2006). [CrossRef]
  5. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Communications Magazine, 48–55 (2010). [CrossRef]
  6. C. Xie, Y. Zhao, Z. Xiao, D. Chang, and F. Yu, “FEC for high speed optical transmission,” Proc. of SPIE-OSA-IEEE8309, 83091R1 (2011).
  7. K. Azadet, E. Haratsch, and H. Kim, “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits37, 317–327 (2002). [CrossRef]
  8. M. Freiberger, D. Templeton, and E. Mercado, “Low latency optical services,” in “National Fiber Optic Engineers Conference,” p. NTu2E.1 (OSA, Washington, D.C., 2012).
  9. Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, and T. Mizuochi, “A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission,” in “Optical Fiber Communication Conference,” p. OThL3 (OSA, Washington, D.C., 2010).
  10. M. Suzuki and H. Uenohara, “Investigation of all-optical error detection circuit using SOA-MZI-based XOR gates at 10 Gbit/s,” Electron. Lett.45, 224–225 (2009). [CrossRef]
  11. Y. Aikawa, S. Shimizu, and H. Uenohara, “Investigation of all-optical division processing using a SOA-MZI-based XOR gate for all-optical FEC with cyclic code,” Photonics in Switching1, 3–5 (2010).
  12. P. Winzer and R. Essiambre, “Advanced optical modulation formats,” Proceedings of the IEEE94, 952–985 (2006). [CrossRef]
  13. J. E. McGeehan, S. Kumar, and A. E. Willner, “Simultaneous optical digital half-subtraction and -addition using SOAs and a PPLN waveguide.” Opt. Express15, 5543–5549 (2007). [CrossRef] [PubMed]
  14. J. Schröder, O. Brasier, J. VanErps, M. A. F. Roelens, S. Frisken, and B. J. Eggleton, “OSNR monitoring of a 1.28 Tbaud signal by interferometry inside a wavelength-selective switch,” J. Lightw. Technol.29, 1542–1546 (2011). [CrossRef]
  15. J. Schröder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, and B. J. Eggleton, “An optical FPGA: reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing,” Opt. Express21, 690–697 (2013). [CrossRef] [PubMed]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  17. J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express17, 12555–12563 (2009). [CrossRef] [PubMed]
  18. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser & Photonics Review2, 83–99 (2008). [CrossRef]
  19. J. Yu and X. Zhou, “Multilevel modulations and digital coherent detection,” Optical Fiber Technology15, 197–208 (2009). [CrossRef]
  20. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightw. Technol.26, 73–78 (2008). [CrossRef]
  21. B. Eggleton, T. Vo, R. Pant, J. Schroder, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6, 97–114 (2012). [CrossRef]
  22. A. Ellis, J. Lucek, D. Pitcher, D. Moodie, and D. Cotter, “Full 10 × 10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators,” Electron. Lett.34, 1766–1767 (1998). [CrossRef]
  23. P. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett.27, 1440–1441 (1991). [CrossRef]
  24. H. Hansen Mulvad, L. Oxenløwe, M. Galili, A. Clausen, L. Gruner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett.45, 280–281 (2009). [CrossRef]
  25. Y. Paquot, J. Schröder, J. Van Erps, T. D. Vo, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal,” Opt. Express19, 25512–25520 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited