OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23927–23933

Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect

Yu-Cheng Hsiao and Wei Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23927-23933 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1002 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dual-frequency cholesteric liquid crystal (DFCLC) devices characteristically require high operation voltage, which hinders their further development in thin-film-transistor driving. Here we report on a lower-voltage switching method based on the thermodielectric effect. This technique entails applying a high-frequency voltage to occasion dielectric oscillation heating so to induce the increase in crossover frequency. The subsequent change in dielectric anisotropy of the DFCLC allows the switching, with a lower operation voltage, from the planar state to the focal conic or homeotropic state. The temperature rise incurred by the dielectric heating is described.

© 2013 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: August 12, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: September 24, 2013
Published: September 30, 2013

Yu-Cheng Hsiao and Wei Lee, "Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect," Opt. Express 21, 23927-23933 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” Appl. Phys. Lett.83(19), 3864–3866 (2003). [CrossRef]
  2. P.-T. Lin, X. Liang, H. Ren, and S.-T. Wu, “Tunable diffraction grating using ultraviolet-light-induced spatial phase modulation in dual-frequency liquid crystal,” Appl. Phys. Lett.85(7), 1131–1133 (2004). [CrossRef]
  3. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett.36(14), 2632–2634 (2011). [CrossRef] [PubMed]
  4. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express19(24), 23952–23957 (2011). [CrossRef] [PubMed]
  5. Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express3(6), 821–828 (2013). [CrossRef]
  6. M. Xu and D.-K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997). [CrossRef]
  7. C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M.-S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express11(6), 560–565 (2003). [CrossRef] [PubMed]
  8. J. Ma, L. Shi, and D.-K. Yang, “Bistable polymer stabilized cholesteric texture light shutter,” Appl. Phys. Express3(2), 021702 (2010). [CrossRef]
  9. M. Xu and D.-K. Yang, “Electrooptical properties of dual-frequency cholesteric liquid crystal reflective display and drive scheme,” Jpn. J. Appl. Phys.38(3), 6827–6830 (1999). [CrossRef]
  10. F.-C. Lin and W. Lee, “Color-reflective dual-frequency cholesteric liquid crystal displays and their drive schemes,” Appl. Phys. Express4(11), 112201 (2011). [CrossRef]
  11. Y.-C. Hsiao, C.-Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express19(10), 9744–9749 (2011). [CrossRef] [PubMed]
  12. C.-H. Wen and S.-T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett.86(23), 231104 (2005). [CrossRef]
  13. Y. Yin, S. V. Shiyanovskii, A. B. Golovin, and O. D. Lavrentovich, “Dielectric torque and orientation dynamics of liquid crystals with dielectric dispersion,” Phys. Rev. Lett.95(8), 087801 (2005). [CrossRef] [PubMed]
  14. Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Electric heating effects in nematic liquid crystals,” J. Appl. Phys.100(2), 024906 (2006). [CrossRef]
  15. Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Thermodielectric bistability in dual frequency nematic liquid crystal,” Phys. Rev. Lett.98(9), 097801 (2007). [CrossRef] [PubMed]
  16. M. Schadt, “Dielectric heating and relaxations in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)66(1), 319–336 (1981). [CrossRef]
  17. H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency‐addressed liquid crystal field effect,” Appl. Phys. Lett.25(4), 186–188 (1974). [CrossRef]
  18. H. Xianyu, S.-T. Wu, and C.-L. Lin, “Dual frequency liquid crystals: a review,” Liq. Cryst.36(6–7), 717–726 (2009). [CrossRef]
  19. C.-Y. Tang, S.-M. Huang, and W. Lee, “Dielectric relaxation dynamics in a dual-frequency nematic liquid crystal doped with C.I. Acid Red 2,” Dyes Pig.88(1), 1–6 (2011). [CrossRef]
  20. H.-H. Liu and W. Lee, “Time-varying ionic properties of a liquid-crystal cell,” Appl. Phys. Lett.97(2), 023510 (2010). [CrossRef]
  21. Y. A. Cengel, J. M. Cimbala, and R. H. Turner, Fundamentals of Thermal-Fluid Sciences, 4th ed. (McGraw-Hill, 2011).
  22. T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed. (Wiley, New York, 2011).
  23. A. C. Metaxas, Foundations of Electroheat: A Unified Approach (Wiley, 1996).
  24. G. Solladié and R. G. Zimmermann, “Liquid crystals: A tool for studies on chirality,” Angew. Chem. Int. Ed. Engl.23(5), 348–362 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited