OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23934–23941

Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging

Matthew Strathman, Yunbo Liu, Xingde Li, and Lih Y. Lin  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23934-23941 (2013)
http://dx.doi.org/10.1364/OE.21.023934


View Full Text Article

Enhanced HTML    Acrobat PDF (2435 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias.

© 2013 Optical Society of America

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(230.0230) Optical devices : Optical devices
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 15, 2013
Revised Manuscript: September 23, 2013
Manuscript Accepted: September 23, 2013
Published: September 30, 2013

Citation
Matthew Strathman, Yunbo Liu, Xingde Li, and Lih Y. Lin, "Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging," Opt. Express 21, 23934-23941 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Provenzale, “Screening and surveillance of gastrointestinal cancers,” in Gastrointestinal Cancers, A. Rustgi and J. M. Crawford, eds. (Saunders Publishing, 2003), 193–204.
  2. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, 1995).
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  4. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  5. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett.29(15), 1763–1765 (2004). [CrossRef] [PubMed]
  6. J. F. Xi, Y. P. Chen, Y. Y. Zhang, K. Murari, M.-J. Li, and X. D. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012). [CrossRef] [PubMed]
  7. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics3(5-6), 385–407 (2010). [CrossRef] [PubMed]
  8. M. T. Myaing, D. J. MacDonald, and X. D. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  9. Y. Zhang, M. L. Akins, K. Murari, J. F. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. D. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A.109(32), 12878–12883 (2012). [CrossRef] [PubMed]
  10. M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett.30(13), 1680–1682 (2005). [CrossRef] [PubMed]
  11. A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging,” Opt. Express15(5), 2445–2453 (2007). [CrossRef] [PubMed]
  12. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror,” Opt. Lett.31(13), 2018–2020 (2006). [CrossRef] [PubMed]
  13. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express15(26), 18130–18140 (2007). [CrossRef] [PubMed]
  14. J. J. Sun, S. G. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. K. Xie, “3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express18(12), 12065–12075 (2010). [CrossRef] [PubMed]
  15. Y. Shao and D. L. Dickensheets, “MOEMS 3-D scan mirror for single-point control of beam deflection and focus,” J. Micro Nanolith. MEMS MOEMS4(4), 041502 (2005).
  16. V. X. D. Yang, Y. Mao, B. A. Standish, N. R. Munce, S. Chiu, D. Burnes, B. C. Wilson, I. A. Vitkin, P. A. Himmer, and D. L. Dickensheets, “Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking,” Opt. Lett.31(9), 1262–1264 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited