OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23950–23962

Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise

Stefan Preußler, Norman Wenzel, Ralf-Peter Braun, Nina Owschimikow, Carlo Vogel, Anselm Deninger, Avi Zadok, Ulrike Woggon, and Thomas Schneider  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23950-23962 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The interference between two spectral lines of the frequency comb of a fiber femtosecond laser is used to generate millimeter-wave and terahertz tones. The two lines are selected by stimulated Brillouin scattering (SBS) amplification. All other modes are strongly rejected based on polarization discrimination, using the polarization-pulling effect that is associated with SBS. The inherent high spectral quality of a femtosecond fiber laser comb allows generation of millimeter- and terahertz waves with linewidths below 1 Hz, and a phase noise of −105 dBc/Hz at 10 kHz offset. The generation, free-space transmission and detection of continuous waves at 1 THz are demonstrated as well. Lastly, the generated millimeter-wave carriers are modulated by 40 Gbit/s data. The entire system consists of a fiber laser and standard equipment of optical telecommunications. Besides metrology, spectroscopy and astronomy, the method can be utilized for the emergent field of wireless millimeter-wave and THz-communications at ultra-high data rates.

© 2013 OSA

OCIS Codes
(290.5900) Scattering : Scattering, stimulated Brillouin
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Terahertz Optics

Original Manuscript: June 18, 2013
Revised Manuscript: July 30, 2013
Manuscript Accepted: August 22, 2013
Published: October 1, 2013

Stefan Preußler, Norman Wenzel, Ralf-Peter Braun, Nina Owschimikow, Carlo Vogel, Anselm Deninger, Avi Zadok, Ulrike Woggon, and Thomas Schneider, "Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise," Opt. Express 21, 23950-23962 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Sherwin, C. A. Schmuttenmaer, and P. H. Bucksbaum, Opportunities in THz Science(U.S. Department of Energy, 2004).
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005). [CrossRef]
  3. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8 THz,” Opt. Express15, 12060–12067 (2007). [CrossRef] [PubMed]
  4. M. C. Stowe, A. Peer, and J. Ye, “Control of four-level quantum coherence via discrete spectral shaping of an optical frequency comb,” Phys. Rev. Lett.100, 203001–203004 (2008). [CrossRef] [PubMed]
  5. I. Cámara Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Güsten, “First in-field application of a full photonic local oscillator to terahertz astronomy,” IEEE Trans. THz Science and Technol.2, 393–399 (2012). [CrossRef]
  6. T. Schneider, A. Wiatrek, S. Preußler, M. Grigat, and R. P. Braun, “Link budget analysis for terahertz fixed wireless links,” IEEE Trans. THz Science and Technol.2, 250–256 (2012). [CrossRef]
  7. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Techn.50, 910–928 (2002). [CrossRef]
  8. J. C. Pearson, B. J. Droiun, A. Maestrini, I. Mehdi, and J. Ward, “Demonstration of a room temperature 2.48 – 2.75 THz coherent spectroscopy source,” Rev. Sci. Instruments82, 093105–093109 (2011). [CrossRef]
  9. J. R. Demers, T. M. Goyette, K. B. Ferrio, H. O. Everitt, B. D. Guenther, and F. C. De Lucia, “Spectral purity and sources of noise in femtosecond-demodulation terahertz sources driven by Ti : Sapphire mode-locked lasers,” IEEE J. Quant. Electron.37, 595–605 (2001). [CrossRef]
  10. I. Kallfass, J. Antes, T. Schneider, F. Kurz, D. Lopez-Diaz, S. Diebold, H. Massler, A. Leuther, and A. Tessmann, “All active MMIC-based wireless communication at 220 GHz,” IEEE Trans. THz Science and Technol.1, 477–487 (2011). [CrossRef]
  11. H. W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express13, 5890–5896 (2005). [CrossRef] [PubMed]
  12. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003). [CrossRef]
  13. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85, 1674–1676 (2004). [CrossRef]
  14. S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “1.9 THz quantum-cascade lasers with one-well injector,” Appl. Phys. Lett.88, 121123–121125 (2006). [CrossRef]
  15. A. Barkan, F. Tittel, D. Mittleman, R. Dengler, P. Siegel, G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, A. Davies, and D. Ritchie, “Linewidth and tuning characteristics of terahertz quantum cascade lasers,” Opt. Lett.29, 575–577 (2004). [CrossRef] [PubMed]
  16. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, and M. Razeghi, “Room temperature continuous wave operation of λ∼ 3–3.2 μm quantum cascade lasers,” Appl. Phys. Lett.101, 241110–241113 (2012). [CrossRef]
  17. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett.30, 3231–3233 (2005). [CrossRef] [PubMed]
  18. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express17, 22031–22040 (2009). [CrossRef] [PubMed]
  19. T. Yasui, H. Takahashi, Y. Iwamoto, H. Inaba, and K. Minoshima, “Continuously tunable, phase-locked, continuous-wave terahertz generator based on photomixing of two continuous-wave lasers locked to two independent optical combs,” J. Appl. Phys.107, 033111–033117 (2010). [CrossRef]
  20. T. Yasui, H. Takahashi, K. Kawamoto, Y. Iwamoto, K. Arai, T. Araki, H. Inaba, and K. Minoshima, “Widely and continuously tunable terahertz synthesizer traceable to a microwave frequency standard,” Opt. Express19, 4428–4437 (2011). [CrossRef] [PubMed]
  21. F. Hindle, G. Mouret, S. Eliet, M. Guinet, A. Cuisset, R. Bocquet, T. Yasui, and D. Rovera, “Widely tunable THz synthesizer,” Appl. Phys. B104, 763–768 (2011). [CrossRef]
  22. A. Hirata, H. Togo, N. Shimizu, H. Takahashi, K. Okamoto, and T. Nagatsuma, “Low-phase noise photonic millimeter-wave generator using an AWG integrated with a 3-dB combiner,” IEICE Trans. Electron.E88-C, 1458–1464 (2005). [CrossRef]
  23. T. Schneider, M. Junker, and K.-U. Lauterbach, “Theoretical and experimental investigation of Brillouin scattering for the generation of millimeter waves,” J. Opt. Soc. Am. B23, 1012–1019 (2006). [CrossRef]
  24. T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimetre waves,” J. Lightw. Technol.24, 295–304 (2006). [CrossRef]
  25. M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimetre-waves with low phase noise properties,” IEEE Trans. on Microwave Theory and Techniques54, 1576–1581 (2006). [CrossRef]
  26. T. Schneider, M. Junker, and D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” El. Lett.40, 1500–1502 (2004). [CrossRef]
  27. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightw. Technol.21, 3043–3051 (2003). [CrossRef]
  28. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Kluwer Academic Publishers/Springer, 2004).
  29. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett.82, 3568–3571 (1999). [CrossRef]
  30. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett.85, 2264–2267 (2000). [CrossRef] [PubMed]
  31. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, and J. L. Hall, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.84, 5102–5105 (2000). [CrossRef] [PubMed]
  32. E. D. Black, “An Introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys.69, 79–87 (2001). [CrossRef]
  33. T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling carrier photodiodes;” in: Ultrafast Electronics and Optoelectronics, M. Nuss and J. Bowers, eds., Vol. 13 of OSA Trends in Optics and Photonics Series (1997), paper UC3.
  34. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett.,66, 285–287 (1995). [CrossRef]
  35. T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” El. Lett.41, 1234–1235 (2005). [CrossRef]
  36. S. Treff, S. Preußler, and T. Schneider, “Measuring the spectra of advanced optical signals with an extension of an electrical network analyzer,” OFC/NFOECAnnaheim CA, March 17. 2013 JW2A.
  37. R. W. Boyd, Nonlinear Optics (Academic Press, 1999).
  38. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Phot. Technol. Lett.23, 1118–1120 (2011). [CrossRef]
  39. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4 MHz,” Opt. Express19, 8565–8570 (2011). [CrossRef] [PubMed]
  40. S. Preussler and T. Schneider, “Bandwidth reduction in a multistage Brillouin system,” Opt. Lett.37, 4122–4124 (2012). [CrossRef] [PubMed]
  41. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol.12, 585–590, (1994). [CrossRef]
  42. A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16, 21692–21707 (2008). [CrossRef] [PubMed]
  43. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express19, 21945–21955 (2011). [CrossRef] [PubMed]
  44. S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express20, 14734–14745 (2012). [CrossRef] [PubMed]
  45. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” J. Infrared Milli. Terahz. Waves32, 225–232 (2011). [CrossRef]
  46. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. di Natale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett.67, 3844–3846 (1995). [CrossRef]
  47. H. Fuser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett.99, 121111–121113 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited