OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23985–23996

Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23985-23996 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We tackle the problem of information recovery and imaging through scattering microfluidic chips by means of digital holography (DH). In many cases the chip can become opalescent due to residual deposits settling down the inner channel faces, biofilm formation, scattering particle uptake by the channel cladding or its damaging by corrosive substances, or even by condensing effect on the exterior channels walls. In these cases white-light imaging is severely degraded and no information is obtainable at all about the flowing samples. Here we investigate the problem of counting and estimating velocity of cells flowing inside a scattering chip. Moreover we propose and test a method based on the recording of multiple digital holograms to retrieve improved phase-contrast images despite the strong scattering effect. This method helps, thanks to DH, to recover information which, otherwise, would be completely lost.

© 2013 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(290.0290) Scattering : Scattering
(110.0113) Imaging systems : Imaging through turbid media
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: June 27, 2013
Revised Manuscript: July 30, 2013
Manuscript Accepted: August 3, 2013
Published: October 1, 2013

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, "Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip," Opt. Express 21, 23985-23996 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature442(7101), 368–373 (2006). [CrossRef] [PubMed]
  2. D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta507(1), 11–26 (2004). [CrossRef]
  3. P. C. H. Li, L. de Camprieu, J. Cai, and M. Sangar, “Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips,” Lab Chip4(3), 174–180 (2004). [CrossRef] [PubMed]
  4. J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, “A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes,” Proc. Natl. Acad. Sci. U.S.A.100(25), 14618–14622 (2003). [CrossRef] [PubMed]
  5. Y. Zeng, L. Jiang, W. Zheng, D. Li, S. Yao, and J. Y. Qu, “Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging,” Opt. Lett.36(12), 2236–2238 (2011). [CrossRef] [PubMed]
  6. B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab Chip5(4), 401–406 (2005). [CrossRef] [PubMed]
  7. R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, K. Sutoh, and H. Fujita, “Unidirectional transport of kinesin-coated beads on microtubules oriented in a microfluidic device,” Nano Lett.4(11), 2265–2270 (2004). [CrossRef]
  8. C. Simonnet and A. Groisman, “Two-dimensional hydrodynamic focusing in a simple microfluidic device,” Appl. Phys. Lett.87(114104), 1–3 (2005).
  9. C. E. Willert and M. Gharib, “Digital PIV,” Exp. Fluids10, 181–193 (1991).
  10. J. Westerweel, D. Dabiri, and M. Gharib, “The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings,” Exp. Fluids23(1), 20–28 (1997). [CrossRef]
  11. R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008). [CrossRef] [PubMed]
  12. G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” Methods Cell Biol.90, 87–115 (2008). [CrossRef] [PubMed]
  13. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett.31(18), 2759–2761 (2006). [CrossRef] [PubMed]
  14. A. Ozcan and U. Demirci, “Ultra wide-field lens-free monitoring of cells on-chip,” Lab Chip8(1), 98–106 (2007). [CrossRef] [PubMed]
  15. H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip11(2), 315–322 (2011). [CrossRef] [PubMed]
  16. D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab Chip10(14), 1787–1792 (2010). [CrossRef] [PubMed]
  17. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip6(10), 1274–1276 (2006). [CrossRef] [PubMed]
  18. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A.105(31), 10670–10675 (2008). [CrossRef] [PubMed]
  19. G. Zheng, S. A. Lee, S. Yang, and C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip10(22), 3125–3129 (2010). [CrossRef] [PubMed]
  20. W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express18(26), 27499–27510 (2010). [CrossRef] [PubMed]
  21. W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip11(7), 1276–1279 (2011). [CrossRef] [PubMed]
  22. A. Greenbaum, U. Sikora, and A. Ozcan, “Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging,” Lab Chip12(7), 1242–1245 (2012). [CrossRef] [PubMed]
  23. M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature453(7198), 1086–1089 (2008). [CrossRef] [PubMed]
  24. Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett.35(10), 1548–1550 (2010). [CrossRef] [PubMed]
  25. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express15(16), 10253–10265 (2007). [CrossRef] [PubMed]
  26. N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS ONE7(1), e30912 (2012). [CrossRef] [PubMed]
  27. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip12(17), 3073–3076 (2012). [CrossRef] [PubMed]
  28. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett.37(20), 4212–4214 (2012). [CrossRef] [PubMed]
  29. V. Bianco, M. Paturzo, A. Finizio, P. Ferraro, and P. Memmolo, “Seeing through turbid fluids: a new perspective in microfluidics,” Opt. Photonics News23(12), 33 (2012). [CrossRef]
  30. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics2(3), 190–195 (2008). [CrossRef]
  31. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express18(9), 8806–8815 (2010). [CrossRef] [PubMed]
  32. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with digital holography microscope using a partial spatial coherent source,” Appl. Opt.38(34), 7085–7094 (1999). [CrossRef] [PubMed]
  33. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt.47(4), A103–A110 (2008). [CrossRef] [PubMed]
  34. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express19(10), 9192–9200 (2011). [CrossRef] [PubMed]
  35. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt.45(5), 864–871 (2006). [CrossRef] [PubMed]
  36. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett.101(23), 238102 (2008). [CrossRef] [PubMed]
  37. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett.35(12), 2112–2114 (2010). [CrossRef] [PubMed]
  38. M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express21(5), 5379–5390 (2013). [CrossRef] [PubMed]
  39. I. Alexeenko, J. F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt.52(1), A56–A67 (2013). [CrossRef] [PubMed]
  40. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008). [CrossRef] [PubMed]
  41. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature491(7423), 232–234 (2012). [CrossRef] [PubMed]
  42. Y. Wang, D. Wang, D. Yang, L. Ouyang, J. Zhao, and P. Spozmai, “Microchannel detection of microfluidic chips with digital holography imaging system,” Proc. SPIE8418, 841816, 841816-6 (2012). [CrossRef]
  43. J. Y. Yoon, J. H. Han, B. Heinze, and L. J. Lucas, “Microfluidic device detection of waterborne pathogens through static light scattering of latex immunoagglutination using proximity optical fibers,” Proc. Spie 6556, 65560M (2007). [CrossRef]
  44. J. Kim, H. S. Kim, S. Han, J. Y. Lee, J. E. Oh, S. Chung, and H. D. Park, “Hydrodynamic effects on bacterial biofilm development in a microfluidic environment,” Lab Chip13(10), 1846–1849 (2013). [CrossRef] [PubMed]
  45. P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annu. Rev. Microbiol.56(1), 187–209 (2002). [CrossRef] [PubMed]
  46. D. de Beer and M. Kuhl, “Interfacial Microbial Mats and Biofilms,” The Benthic Boundary Layer: Transport Processes and Biogeochemistry (Oxford University, 2001), pp. 374–394.
  47. Z. Y. Piao, C. C. Sze, O. Barysheva, K. Iida, and S. Yoshida, “Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila,” Appl. Environ. Microbiol.72(2), 1613–1622 (2006). [CrossRef] [PubMed]
  48. M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva, and O. Geschke, “Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies,” Lab Chip10(16), 2162–2169 (2010). [CrossRef] [PubMed]
  49. S. H. Hong, M. Hegde, J. Kim, X. Wang, A. Jayaraman, and T. K. Wood, “Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device,” Nat. Commun.3(613), 613 (2012). [CrossRef] [PubMed]
  50. J. Garcia-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.)116(1), 44–48 (2005). [CrossRef]
  51. F. Monroy, O. Rincon, Y. M. Torres, and J. Garcia-Sucerquia, “Quantitative assessment of lateral resolution improvement in digital holography,” Opt. Commun.281(13), 3454–3460 (2008). [CrossRef]
  52. V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett.38(5), 619–621 (2013). [CrossRef] [PubMed]
  53. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A25(7), 1744–1761 (2008). [CrossRef] [PubMed]
  54. T. Kreis, “Handbook of Holographic Interferometry: Optical and Digital Methods,” 1st ed. (Wiley-VCH, Germany, 2004).
  55. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42(11), 1938–1946 (2003). [CrossRef] [PubMed]
  56. P. Memmolo, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, and P. Ferraro, “On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change,” Opt. Express20(27), 28485–28493 (2012). [CrossRef] [PubMed]
  57. J. S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlinck, “Speckle filtering of synthetic aperture radar images: a review,” Remote Sens. Rev.8(4), 313–340 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (231 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited