OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24015–24024

Sparsity-based super-resolution and phase-retrieval in waveguide arrays

Yoav Shechtman, Eran Small, Yoav Lahini, Mor Verbin, Yonina C. Eldar, Yaron Silberberg, and Mordechai Segev  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 24015-24024 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1094 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a scheme for recovering the complex input field launched into a waveguide array, from partial measurements of its output intensity, given advance knowledge that the input is sparse. In spite of the fact that in general the inversion problem is ill-conditioned, we demonstrate experimentally and in simulations that the prior knowledge of sparsity helps overcome the loss of information. Our method is based on GESPAR, a recently proposed efficient phase retrieval algorithm. Possible applications include optical interconnects and quantum state tomography, and the ideas are extendable to other multiple input and multiple output (MIMO) communication schemes.

© 2013 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Optics in Computing

Original Manuscript: July 9, 2013
Revised Manuscript: September 2, 2013
Manuscript Accepted: September 17, 2013
Published: October 1, 2013

Yoav Shechtman, Eran Small, Yoav Lahini, Mor Verbin, Yonina C. Eldar, Yaron Silberberg, and Mordechai Segev, "Sparsity-based super-resolution and phase-retrieval in waveguide arrays," Opt. Express 21, 24015-24024 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE88(6), 728–749 (2000). [CrossRef]
  2. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  3. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express17(26), 23920–23946 (2009). [CrossRef] [PubMed]
  4. Y. Shechtman, S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse images carried by incoherent light,” Opt. Lett.35(8), 1148–1150 (2010). [CrossRef] [PubMed]
  5. Y. Shechtman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express19(16), 14807–14822 (2011). [CrossRef] [PubMed]
  6. A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater.11(5), 455–459 (2012). [CrossRef] [PubMed]
  7. Y. Shechtman, Y. C. Eldar, O. Cohen, and M. Segev, “Efficient coherent diffractive imaging for sparsely varying objects,” Opt. Express21(5), 6327–6338 (2013). [CrossRef] [PubMed]
  8. K. Jaganathan, S. Oymak, and B. Hassibi, “Recovery of sparse 1-D signals from the magnitudes of their Fourier transform,” in Information Theory Proceedings (ISIT),2012 IEEE International Symposium On (2012), pp. 1473–1477. [CrossRef]
  9. Y. Shechtman, A. Beck, and Y. C. Eldar, “GESPAR: Efficient Phase Retrieval of Sparse Signals,” arXiv:1301.1018 (2013).
  10. H. Ohlsson, A. Y. Yang, R. Dong, and S. S. Sastry, “Nonlinear Basis Pursuit,” arXiv:1304.5802 (2013).
  11. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52(4), 1289–1306 (2006). [CrossRef]
  12. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52(2), 489–509 (2006). [CrossRef]
  13. Y.C. Eldar and Kutyniok, Compressed Sensing Theory and Applications (Cambridge University Press, 2012).
  14. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, 2010).
  15. A. Beck and Y. C. Eldar, “Sparsity constrained nonlinear optimization: Optimality conditions and algorithms,” arXiv preprint arXiv:1203.4580 (2012).
  16. Y. C. Eldar and S. Mendelson, “Phase retrieval: Stability and recovery guarantees,” arXiv preprint arXiv:1211.0872 (2012).
  17. A. L. Jones, “Coupling of Optical Fibers and Scattering in Fibers,” J. Opt. Soc. Am.55(3), 261–269 (1965). [CrossRef]
  18. D. Bertsekas, Nonlinear Programming (Athena Scientific, 1999).
  19. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Discrete Nonlinear Localization in Femtosecond Laser Written Waveguides in Fused Silica,” Opt. Express13(26), 10552–10557 (2005). [CrossRef] [PubMed]
  20. A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson, “Saving phase: Injectivity and stability for phase retrieval,” arXiv:1302.4618 (2013).
  21. H. Ohlsson and Y. C. Aldar, “On conditions for uniqueness in sparse phase retrieval,” arXiv:1308.5447 (2013).
  22. W. Dong, L. Zhang, R. Lukac, and G. Shi, “Sparse Representation Based Image Interpolation With Nonlocal Autoregressive Modeling,” IEEE Trans. Image Process.22(4), 1382–1394 (2013). [CrossRef] [PubMed]
  23. Y. Bromberg, Y. Lahini, R. Morandotti, and Y. Silberberg, “Quantum and Classical Correlations in Waveguide Lattices,” Phys. Rev. Lett.102(25), 253904 (2009). [CrossRef] [PubMed]
  24. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum Walks of Correlated Photons,” Science329(5998), 1500–1503 (2010). [CrossRef] [PubMed]
  25. Y. Lahini, M. Verbin, S. D. Huber, Y. Bromberg, R. Pugatch, and Y. Silberberg, “Quantum walk of two interacting bosons,” Phys. Rev. A86(1), 011603 (2012). [CrossRef]
  26. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001). [CrossRef] [PubMed]
  27. M. A. Nielsen, “Optical Quantum Computation Using Cluster States,” Phys. Rev. Lett.93(4), 040503 (2004). [CrossRef] [PubMed]
  28. D. Oren, Y. Shechtman, Y. C. Eldar, and M. Segev, “Structure-Based Super-Resolution in Quantum Information,” in CLEO:2013 (Optical Society of America, 2013), p. QF1B.7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited