OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24025–24038

Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography

Danuta M. Bukowska, Ladislav Derzsi, Szymon Tamborski, Maciej Szkulmowski, Piotr Garstecki, and Maciej Wojtkowski  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 24025-24038 (2013)
http://dx.doi.org/10.1364/OE.21.024025


View Full Text Article

Enhanced HTML    Acrobat PDF (5556 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although Doppler optical coherence tomography techniques have enabled the imaging of blood flow in mid-sized vessels in biological tissues, the generation of velocity maps of capillary networks remains a challenge. To better understand the origin and information content of the Doppler signal from small vessels and limitations of such measurements, we used joint spectral and time domain optical coherence tomography to monitor the flow in a model, semitransparent microchannel device. The results obtained for Intralipid, whole blood, as well as separated red blood cells indicate that the technique is suitable to record velocity profiles in vitro, in a range of microchannel configurations.

© 2013 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 10, 2013
Revised Manuscript: September 4, 2013
Manuscript Accepted: September 9, 2013
Published: October 1, 2013

Citation
Danuta M. Bukowska, Ladislav Derzsi, Szymon Tamborski, Maciej Szkulmowski, Piotr Garstecki, and Maciej Wojtkowski, "Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography," Opt. Express 21, 24025-24038 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-24025


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Sugii, S. Nishio, and K. Okamoto, “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,” Physiol. Meas.23(2), 403–416 (2002). [CrossRef] [PubMed]
  2. G. Mchedlishvili and N. Maeda, “Blood flow structure related to red cell flow: A determinant of blood fluidity in narrow microvessels,” Jpn. J. Physiol.51(1), 19–30 (2001). [CrossRef] [PubMed]
  3. S. Einav, H. J. Berman, R. L. Fuhro, P. R. DiGiovanni, J. D. Fridman, and S. Fine, “Measurement of blood flow in vivo by Laser Doppler Anemometry through a microscope,” Biorheology12(3-4), 203–205 (1975). [PubMed]
  4. H. Golster, M. Lindén, S. Bertuglia, A. Colantuoni, G. Nilsson, and F. Sjöberg, “Red blood cell velocity and volumetric flow assessment by enhanced high-resolution laser Doppler imaging in separate vessels of the hamster cheek pouch microcirculation,” Microvasc. Res.58(1), 62–73 (1999). [CrossRef] [PubMed]
  5. A. Nakano, Y. Sugii, M. Minamiyama, and H. Niimi, “Measurement of red cell velocity in microvessels using particle image velocimetry (PIV),” Clin. Hemorheol. Microcirc.29(3-4), 445–455 (2003). [PubMed]
  6. M. Baker and H. Wayland, “On-line volume flow rate and velocity profile measurement for blood in microvessels,” Microvasc. Res.7(1), 131–143 (1974). [CrossRef] [PubMed]
  7. T. Cochrane, J. C. Earnshaw, and A. H. G. Love, “Laser Doppler measurement of blood velocity in microvessels,” Med. Biol. Eng. Comput.19(5), 589–596 (1981). [CrossRef] [PubMed]
  8. C. Alonso, A. R. Pries, O. Kiesslich, D. Lerche, and P. Gaehtgens, “Transient rheological behaviour of blood in low-shear tube flow - velocity profiles and effective viscosity,” Am, J. Physiol.268, H25–H32 (1995).
  9. R. Lima, S. Wada, M. Takeda, K.-i. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles,” J. Biomech.40(12), 2752–2757 (2007). [CrossRef] [PubMed]
  10. H. L. Goldsmith and V. T. Turitto, “Rheological aspects of thrombosis and hemostasis - basic principles and applications,” Thromb. Haemost.55, 415–435 (1986). [PubMed]
  11. R. Lima, “Flow behavior of labeled red blood cells in microchannels: A confocal micro-PTV assessment,” IFMBE Proc.31, 1047–1050 (2010). [CrossRef]
  12. R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res.49(3), 191–215 (1992). [CrossRef]
  13. R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. I. Tsubota, Y. Imai, and T. Yamaguchi, “In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system,” Biomed. Microdevices10(2), 153–167 (2008). [CrossRef] [PubMed]
  14. Y. Sugii, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol.16(5), 1126–1130 (2005). [CrossRef]
  15. L. Bitsch, L. H. Olesen, C. H. Westergaard, H. Bruus, H. Klank, and J. P. Kutter, “Micro particle-image velocimetry of bead suspensions and blood flows,” Exp. Fluids39(3), 507–511 (2005). [CrossRef]
  16. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49(16), D30–D61 (2010). [CrossRef] [PubMed]
  17. Y. Wang and R. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett.35(21), 3538–3540 (2010). [CrossRef] [PubMed]
  18. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3(3), 612–629 (2012). [CrossRef] [PubMed]
  19. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express17(13), 10584–10598 (2009). [CrossRef] [PubMed]
  20. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010). [CrossRef] [PubMed]
  21. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in Spectral OCT,” Opt. Express17(26), 23736–23754 (2009). [CrossRef] [PubMed]
  22. X. Xu, L. Yu, and Z. Chen, “Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography,” IEEE Trans. Biomed. Eng.55(12), 2753–2758 (2008). [CrossRef] [PubMed]
  23. X. Q. Xu, Y. C. Ahn, and Z. P. Chen, “Feasibility of Doppler variance imaging for red blood cell aggregation characterization,” J. Biomed. Opt.14(6), 060507 (2009). [CrossRef] [PubMed]
  24. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997). [CrossRef] [PubMed]
  25. X. J. Wang, T. E. Milner, Z. P. Chen, and J. S. Nelson, “Measurement of fluid-flow-velocity profile in turbid media by the use of optical Doppler tomography,” Appl. Opt.36(1), 144–149 (1997). [CrossRef] [PubMed]
  26. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by Optical Doppler Tomography,” Opt. Lett.20(11), 1337–1339 (1995). [CrossRef] [PubMed]
  27. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express11(7), 794–809 (2003). [CrossRef] [PubMed]
  28. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  29. Z. P. Chen, T. E. Milner, X. J. Wang, S. Srinivas, and J. S. Nelson, “Optical Doppler tomography: Imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy,” Photochem. Photobiol.67(1), 56–60 (1998). [CrossRef] [PubMed]
  30. J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography,” J. Biomed. Opt.9(5), 982–994 (2004). [CrossRef] [PubMed]
  31. J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Phys. D38(15), 2597–2605 (2005). [CrossRef]
  32. S. G. Proskurin, I. A. Sokolova, and R. K. Wang, “Imaging of non-parabolic velocity profiles in converging flow with optical coherence tomography,” Phys. Med. Biol.48(17), 2907–2918 (2003). [CrossRef] [PubMed]
  33. L. Wang, W. Xu, M. Bachman, G. P. Li, and Z. P. Chen, “Imaging and quantifying of microflow by phase-resolved optical Doppler tomography,” Opt. Commun.232(1-6), 25–29 (2004). [CrossRef]
  34. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  35. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  36. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express16(9), 6008–6025 (2008). [CrossRef] [PubMed]
  37. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography,” Opt. Express17(16), 14281–14297 (2009). [CrossRef] [PubMed]
  38. J. Lauri, M. Wang, M. Kinnunen, and R. Myllyla, “Measurement of microfluidic flow velocity profile with two Doppler optical coherence tomography systems,” Proc. SPIE6863, 68630F (2008). [CrossRef]
  39. S. G. Li, Z. G. Xu, S. F. Yoon, and Z. P. Fang, “Feasibility study on bonding quality inspection of microfluidic devices by optical coherence tomography,” J. Biomed. Opt.16(6), 066011 (2011). [CrossRef] [PubMed]
  40. C. W. Xi, D. L. Marks, D. S. Parikh, L. Raskin, and S. A. Boppart, “Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A.101(20), 7516–7521 (2004). [CrossRef] [PubMed]
  41. Y. C. Ahn, W. Y. Jung, J. Zhang, and Z. P. Chen, “Investigation of laminar dispersion with optical coherence tomography and optical Doppler tomography,” Opt. Express13(20), 8164–8171 (2005). [CrossRef] [PubMed]
  42. H. Bruus, “Theoretical microfluidics,”(Oxford University Press, 2008).
  43. J. H. Yun, M.-S. Chun, and H. W. Jung, “The geometry effect on steady electrokinetic flows in curved rectangular microchannels,” Phys. Fluids 22(5), 052004–1 −10 (2010). [CrossRef]
  44. Y. C. Ahn, W. Jung, and Z. P. Chen, “Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography,” Opt. Lett.32(11), 1587–1589 (2007). [CrossRef] [PubMed]
  45. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, “Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels,” Opt. Lett.33(24), 2967–2969 (2008). [CrossRef] [PubMed]
  46. N. Maeda, “Erythrocyte rheology in microcirculation,” Jpn. J. Physiol.46(1), 1–14 (1996). [CrossRef] [PubMed]
  47. F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem.81(2), 519–526 (2009). [CrossRef] [PubMed]
  48. A. Alrifaiy and K. Ramser, “How to integrate a micropipette into a closed microfluidic system: absorption spectra of an optically trapped erythrocyte,” Biomed. Opt. Express2(8), 2299–2306 (2011). [CrossRef] [PubMed]
  49. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited