OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24049–24059

Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding

Sizhu Wu, Dong Wu, Jian Xu, Haiyu Wang, Testuya Makimura, Koji Sugioka, and Katsumi Midorikawa  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 24049-24059 (2013)
http://dx.doi.org/10.1364/OE.21.024049


View Full Text Article

Enhanced HTML    Acrobat PDF (1259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption mechanism of the second pulse is experimentally and theoretically investigated for high-efficiency microwelding of photosensitive glass by double-pulse irradiation using a femtosecond laser. The transient absorption change during the second pulse irradiation for various energies induced by the first pulse is measured at different delay times. The resulting effects depend on whether the delay time is 0–30 ps (time domain I) or 30– several ns (domain II). By solving rate equations for the proposed electronic processes, the excitation and relaxation times of free electrons in time domain I are estimated to be 0.98 and 20.4 ps, respectively, whereas the relaxation times from the conduction band to a localized state and from the localized state to the valence band in domain II are 104.2 and 714.3 ps, respectively. Single-photon absorption of the second pulse by free electrons dominates in domain I, resulting in high bonding strength. In time domain II, about 46% of the second pulse is absorbed by a single photon due to the localized state, which is responsible for higher bonding strength compared with that prepared by single-pulse irradiation.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.2750) Materials : Glass and other amorphous materials
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 11, 2013
Revised Manuscript: September 9, 2013
Manuscript Accepted: September 10, 2013
Published: October 1, 2013

Citation
Sizhu Wu, Dong Wu, Jian Xu, Haiyu Wang, Testuya Makimura, Koji Sugioka, and Katsumi Midorikawa, "Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding," Opt. Express 21, 24049-24059 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-24049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulse,” Appl. Phys. Lett.89(2), 021106 (2006). [CrossRef]
  2. W. Watanabe, S. Onda, T. Tamaki, and K. Itoh, “Direct joining of glass substrates by 1 kHz femtosecond laser pulses,” Appl. Phys. B87(1), 85–89 (2007). [CrossRef]
  3. A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process.93(1), 171–175 (2008). [CrossRef]
  4. Y. Kim, J. Choi, Y. Lee, T. Kim, D. Kim, W. Jang, K. S. Lim, I. B. Sohn, and J. Lee, “Femtosecond laser bonding of glasses and ion migration in the interface,” Appl. Phys., A Mater. Sci. Process.101(1), 147–152 (2010). [CrossRef]
  5. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express19(11), 10714–10727 (2011). [CrossRef] [PubMed]
  6. I. Miyamoto, K. Cvecek, and M. Schmidt, “Evaluation of nonlinear absorptivity and absorption region in fusion welding of glass using ultrashort laser pulse,” Phys. Procedia12, 378–386 (2011). [CrossRef]
  7. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003). [CrossRef]
  8. S. S. Mao, F. Quere, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys., A Mater. Sci. Process.79, 1695–1709 (2004). [CrossRef]
  9. K. Cvecek, I. Miyamoto, J. Strauss, V. Bui, S. Scharfenberg, T. Frick, and M. Schmidt, “Strength of joining seam in glass welded by ultra-fast lasers depending on focus height,” J. Laser Micro/Nanoeng7(1), 68–72 (2012). [CrossRef]
  10. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulse,” Jpn. J. Appl. Phys.44(22), L687–L689 (2005). [CrossRef]
  11. T. Tamaki, W. Watanabe, H. Nagai, M. Yoshida, J. Nishii, and K. Itoh, “Structural modification in fused silica by a femtosecond fiber laser at 1558 nm,” Opt. Express14(15), 6971–6980 (2006). [CrossRef] [PubMed]
  12. S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phys., A Mater. Sci. Process.103(2), 257–261 (2011). [CrossRef]
  13. D. Helie, F. Lacroix, and R. Vallee, “Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding,” J. Laser Micro/Nanoeng.7(3), 284–292 (2012). [CrossRef]
  14. D. Hélie, M. Bégin, F. Lacroix, and R. Vallée, “Reinforced direct bonding of optical materials by femtosecond laser welding,” Appl. Opt.51(12), 2098–2106 (2012). [CrossRef] [PubMed]
  15. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express19(23), 22961–22973 (2011). [CrossRef] [PubMed]
  16. K. Sugioka, M. Iida, H. Takai, and K. Micorikawa, “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett.36(14), 2734–2736 (2011). [CrossRef] [PubMed]
  17. S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express20(27), 28893–28905 (2012). [CrossRef] [PubMed]
  18. Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express1, 082601 (2008). [CrossRef]
  19. C. Y. Ho, “Effects of polarizations of a laser on absorption in a paraboloid of revolution-shaped welding or drilling cavity,” J. Appl. Phys.96(10), 5393–5401 (2004). [CrossRef]
  20. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, “Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express20(2), 934–940 (2012). [CrossRef] [PubMed]
  21. I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of shear strength and bonding energy of laser produced welding seams in glass,” J. Laser Micro/Nanoeng.7(3), 279–283 (2012). [CrossRef]
  22. K. Sugioka, S. Wada, H. Tashiro, K. Toyoda, Y. Ohnuma, and A. Nakamura, “Multiwavelength excitation by vacuum-ultraviolet beams coupled with fourth harmonics of a Q-switched Nd:YAG laser for high-quality ablation of fused quartz,” Appl. Phys. Lett.67(19), 2789–2791 (1995). [CrossRef]
  23. K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantu. Electron.2(4), 861–871 (1996). [CrossRef]
  24. T. Hongo, K. Sugioka, H. Niino, Y. Cheng, M. Masuda, I. Miyamoto, H. Takai, and K. Midorikawa, “Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser,” J. Appl. Phys.97(6), 063517 (2005). [CrossRef]
  25. S. Guizard, P. D’Oliveira, P. Daguzan, P. Martin, P. Meynadier, and G. Petite, “Time-resolved studies of carriers dynamics in wide band gap materials, ” Nucl. Instr. and Meth. Phys. Res. B116, 43–48 (1996).
  26. K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer-Verlag, Berlin, Heiderberg, 1993).
  27. B. Fisette and M. Meunier, “Three-dimensional microfabrication inside photosensitive glasses by femtosecond,” J. Laser Micro/Nanoeng.1(1), 7–11 (2006). [CrossRef]
  28. J. Kim, H. Berberoglu, and X. Xu, “Fabrication of microstructures in photoetchable glass ceramics using excimer and femtosecond lasers,” J. Micro. Nanolith.3(3), 478–485 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited