OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24060–24075

High-speed transport-of-intensity phase microscopy with an electrically tunable lens

Chao Zuo, Qian Chen, Weijuan Qu, and Anand Asundi  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 24060-24075 (2013)
http://dx.doi.org/10.1364/OE.21.024060


View Full Text Article

Enhanced HTML    Acrobat PDF (3846 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a high-speed transport-of-intensity equation (TIE) quantitative phase microscopy technique, named TL-TIE, by combining an electrically tunable lens with a conventional transmission microscope. This permits the specimen at different focus position to be imaged in rapid succession, with constant magnification and no physically moving parts. The simplified image stack collection significantly reduces the acquisition time, allows for the diffraction-limited through-focus intensity stack collection at 15 frames per second, making dynamic TIE phase imaging possible. The technique is demonstrated by profiling of microlens array using optimal frequency selection scheme, and time-lapse imaging of live breast cancer cells by inversion the defocused phase optical transfer function to correct the phase blurring in traditional TIE. Experimental results illustrate its outstanding capability of the technique for quantitative phase imaging, through a simple, non-interferometric, high-speed, high-resolution, and unwrapping-free approach with prosperous applications in micro-optics, life sciences and bio-photonics.

© 2013 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval
(110.0180) Imaging systems : Microscopy
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Image Processing

History
Original Manuscript: July 15, 2013
Revised Manuscript: September 16, 2013
Manuscript Accepted: September 17, 2013
Published: October 1, 2013

Citation
Chao Zuo, Qian Chen, Weijuan Qu, and Anand Asundi, "High-speed transport-of-intensity phase microscopy with an electrically tunable lens," Opt. Express 21, 24060-24075 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-24060


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F.  Zernike, “How I Discovered Phase Contrast,” Science 121(3141), 345–349 (1955). [CrossRef] [PubMed]
  2. G.  Nomarski, “Differential microinterferometer with polarized waves,” J. Phys. Radium 16, 9s–13s (1955).
  3. E.  Cuche, P.  Marquet, C.  Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999). [CrossRef] [PubMed]
  4. U.  Schnars, P. O. J.  Werner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002). [CrossRef]
  5. B.  Bhaduri, H.  Pham, M.  Mir, G.  Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012). [CrossRef] [PubMed]
  6. Z.  Wang, L.  Millet, M.  Mir, H.  Ding, S.  Unarunotai, J.  Rogers, M. U.  Gillette, G.  Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011). [CrossRef] [PubMed]
  7. B.  Bhaduri, K.  Tangella, G.  Popescu, “Fourier phase microscopy with white light,” Biomed. Opt. Express 4(8), 1434–1441 (2013). [CrossRef] [PubMed]
  8. M.  Reed Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. 73(11), 1434–1441 (1983). [CrossRef]
  9. A.  Barty, K. A.  Nugent, D.  Paganin, A.  Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23(11), 817–819 (1998). [CrossRef] [PubMed]
  10. D.  Paganin, K. A.  Nugent, “Noninterferometric Phase Imaging with Partially Coherent Light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998). [CrossRef]
  11. L.  Waller, Y.  Luo, S. Y.  Yang, G.  Barbastathis, “Transport of intensity phase imaging in a volume holographic microscope,” Opt. Lett. 35(17), 2961–2963 (2010). [CrossRef] [PubMed]
  12. L.  Waller, S. S.  Kou, C. J. R.  Sheppard, G.  Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010). [CrossRef] [PubMed]
  13. P. F.  Almoro, L.  Waller, M.  Agour, C.  Falldorf, G.  Pedrini, W.  Osten, S. G.  Hanson, “Enhanced deterministic phase retrieval using a partially developed speckle field,” Opt. Lett. 37(11), 2088–2090 (2012). [CrossRef] [PubMed]
  14. S. S.  Gorthi, E.  Schonbrun, “Phase imaging flow cytometry using a focus-stack collecting microscope,” Opt. Lett. 37(4), 707–709 (2012). [CrossRef] [PubMed]
  15. M.  Soto, E.  Acosta, “Improved phase imaging from intensity measurements in multiple planes,” Appl. Opt. 46(33), 7978–7981 (2007). [CrossRef] [PubMed]
  16. L.  Waller, L.  Tian, G.  Barbastathis, “Transport of intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010). [CrossRef] [PubMed]
  17. C.  Zuo, Q.  Chen, Y.  Yu, A.  Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013). [CrossRef] [PubMed]
  18. E. D.  Barone-Nugent, A.  Barty, K. A.  Nugent, “Quantitative phase-amplitude microscopy I: optical microscopy,” J. Microsc. 206(3), 194–203 (2002). [CrossRef] [PubMed]
  19. C. J. R.  Sheppard, “Defocused transfer function for a partially coherent microscope and application to phase retrieval,” J. Opt. Soc. Am. A 21(5), 828–831 (2004). [CrossRef] [PubMed]
  20. L.  Camacho, V.  Micó, Z.  Zalevsky, J.  García, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18(7), 6755–6766 (2010). [CrossRef] [PubMed]
  21. J. W. Goodman, Introduction To Fourier Optics, 3th ed. (Roberts & Company Publishers, 2005).
  22. C.  Falldorf, M.  Agour, C.  v Kopylow, R. B.  Bergmann, “Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system,” Appl. Opt. 49(10), 1826–1830 (2010). [CrossRef] [PubMed]
  23. E. Hecht, Optics, 4th ed. (Addison-Wesley Longman, Incorporated, 2002).
  24. L. J.  Allen, M. P.  Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1-4), 65–75 (2001). [CrossRef]
  25. T. E.  Gureyev, K. A.  Nugent, “Rapid quantitative phase imaging using the transport of intensity equation,” Opt. Commun. 133(1-6), 339–346 (1997). [CrossRef]
  26. M.  Beleggia, M. A.  Schofield, V. V.  Volkov, Y.  Zhu, “On the transport of intensity technique for phase retrieval,” Ultramicroscopy 102(1), 37–49 (2004). [CrossRef] [PubMed]
  27. D.  Paganin, A.  Barty, P. J.  McMahon, K. A.  Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004). [CrossRef] [PubMed]
  28. K.  Ishizuka, B.  Allman, “Phase measurement of atomic resolution image using transport of intensity equation,” J. Electron Microsc. (Tokyo) 54(3), 191–197 (2005). [CrossRef] [PubMed]
  29. R.  Bie, X.-H.  Yuan, M.  Zhao, L.  Zhang, “Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression,” Opt. Express 20(7), 8186–8191 (2012). [CrossRef] [PubMed]
  30. B.  Xue, S.  Zheng, L.  Cui, X.  Bai, F.  Zhou, “Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes,” Opt. Express 19(21), 20244–20250 (2011). [CrossRef] [PubMed]
  31. S.  Zheng, B.  Xue, W.  Xue, X.  Bai, F.  Zhou, “Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes,” Opt. Express 20(2), 972–985 (2012). [CrossRef] [PubMed]
  32. C. J.  Bellair, C. L.  Curl, B. E.  Allman, P. J.  Harris, A.  Roberts, L. M. D.  Delbridge, K. A.  Nugent, “Quantitative phase amplitude microscopy IV: imaging thick specimens,” J. Microsc. 214(1), 62–69 (2004). [CrossRef] [PubMed]
  33. N.  Streibl, “Three-dimensional imaging by a microscope,” J. Opt. Soc. Am. A 2(2), 121–127 (1985). [CrossRef]
  34. S. S.  Kou, L.  Waller, G.  Barbastathis, P.  Marquet, C.  Depeursinge, C. J. R.  Sheppard, “Quantitative phase restoration by direct inversion using the optical transfer function,” Opt. Lett. 36(14), 2671–2673 (2011). [CrossRef] [PubMed]
  35. C. J. R.  Sheppard, “Three-Dimensional Phase Imaging with the Intensity Transport Equation,” Appl. Opt. 41(28), 5951–5955 (2002). [CrossRef] [PubMed]
  36. V. V.  Volkov, Y.  Zhu, M.  De Graef, “A new symmetrized solution for phase retrieval using the transport of intensity equation,” Micron 33(5), 411–416 (2002). [CrossRef] [PubMed]
  37. W.  Qu, C. O.  Choo, V. R.  Singh, Y.  Yingjie, A.  Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 26(9), 2005–2011 (2009). [CrossRef] [PubMed]
  38. T.  Yamauchi, H.  Iwai, M.  Miwa, Y.  Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008). [CrossRef] [PubMed]
  39. J. P.  Guigay, M.  Langer, R.  Boistel, P.  Cloetens, “Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region,” Opt. Lett. 32(12), 1617–1619 (2007). [CrossRef] [PubMed]
  40. J.  Luo, K.  Ying, P.  He, J.  Bai, “Properties of Savitzky–Golay digital differentiators,” Digit. Signal Process. 15(2), 122–136 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (2466 KB)     
» Media 2: MOV (2691 KB)     
» Media 3: MOV (9340 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited