OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24076–24086

Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides

Kenneth K.C. Lee, Adrian Mariampillai, Moez Haque, Beau A. Standish, Victor X.D. Yang, and Peter R. Herman  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 24076-24086 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2559 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temperature-compensated 3D fiber shape sensing is demonstrated with femtosecond laser direct-written optical and Bragg grating waveguides that were distributed axially and radially inside a single coreless optical fiber. Efficient light coupling between the laser-written optical circuit elements and a standard single-mode fiber (SMF) was obtained for the first time by 3D laser writing of a 1 × 3 directional coupler to meet with the core waveguide in the fusion-spliced SMF. Simultaneous interrogation of nine Bragg gratings, distributed along three laterally offset waveguides, is presented through a single waveguide port at 1 kHz sampling rate to follow the Bragg wavelength shifts in real-time and thereby infer shape and temperature profile unambiguously along the fiber length. This distributed 3D strain and thermal sensor is freestanding, flexible, compact, lightweight and opens new directions for creating fiber cladding photonic devices for a wide range of applications from shape and thermal sensing to guidance of biomedical catheters and tools in minimally invasive surgery.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:

Original Manuscript: July 17, 2013
Revised Manuscript: September 15, 2013
Manuscript Accepted: September 18, 2013
Published: October 1, 2013

Virtual Issues
November 8, 2013 Spotlight on Optics

Kenneth K.C. Lee, Adrian Mariampillai, Moez Haque, Beau A. Standish, Victor X.D. Yang, and Peter R. Herman, "Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides," Opt. Express 21, 24076-24086 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett.32, 647–649 (1978). [CrossRef]
  2. D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend sensors with direction recognition based on long-period gratings written in D-shaped fiber,” Appl. Opt.43, 5425–5428 (2004). [CrossRef] [PubMed]
  3. P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express20, 28557–28562 (2012). [CrossRef] [PubMed]
  4. L.-Y. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional Bend Sensor Based on Re-Grown Tilted Fiber Bragg Grating,” J. Lightwave Technol.28, 2681–2687 (2010). [CrossRef]
  5. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev.7, 83–108 (2013). [CrossRef]
  6. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, “Multiple parameter vector bending and high-temperature sensors based on asymmetric multimode fiber Bragg gratings inscribed by an infrared femtosecond laser,” Opt. Lett.31, 1794–1796 (2006). [CrossRef] [PubMed]
  7. G. Flockhart, W. N. MacPherson, J. S. Barton, J. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett.28, 387–389 (2003). [CrossRef] [PubMed]
  8. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-Axis Temperature-Insensitive Accelerometer Based on Multicore Fiber Bragg Gratings,” IEEE Sensors J.8, 1292–1298 (2008). [CrossRef]
  9. X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22, 850–852 (2010). [CrossRef]
  10. R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” in Proc. of SPIE6530, 1S/1–1S/11 (2007).
  11. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express20, 2967–2973 (2012). [CrossRef] [PubMed]
  12. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express19, 5698–5705 (2011). [CrossRef] [PubMed]
  13. R. Kashyap, Fiber Bragg Gratings (Second Edition) (Academic Press, 2010), pp. 53–118. [CrossRef]
  14. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett.40, 1170–1172 (2004). [CrossRef]
  15. R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tuennermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett.36, 2988–2990 (2011). [CrossRef] [PubMed]
  16. K. Zhou, M. Dubov, C. Mou, L. Zhang, V. K. Mezentsev, and I. Bennion, “Line-by-line fiber bragg grating made by femtosecond laser,” IEEE Photon. Technol. Lett.22, 1190–1192 (2010). [CrossRef]
  17. J. R. Grenier, L. A. Fernandes, P. V. Marques, J. S. Aitchison, and P. R. Herman, “Optical circuits in fiber cladding: Femtosecond laser-written bragg grating waveguides,” in “CLEO:2011 - Fiber Devices (CMZ),” (Optical Society of America, Baltimore, 2011).
  18. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.28, 2491–2493 (2003). [CrossRef] [PubMed]
  19. A. Szameit, F. Dreisow, T. Pertsch, S. Nolte, and A. Tuennermann, “Control of directional evanescent coupling in fs laser written waveguides,” Opt. Express15, 1579–1587 (2007). [CrossRef] [PubMed]
  20. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. Stewart Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express20, 24103–24114 (2012). [CrossRef] [PubMed]
  21. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007). [CrossRef] [PubMed]
  22. H. Zhang, “Bragg Grating Waveguide Devices: Discovery, Optimization, and Application,” Ph.D. thesis, University of Toronto (2007).
  23. J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser writing of optical edge filters in fused silica optical waveguides,” Opt. Express21, 4493–4502 (2013). [CrossRef] [PubMed]
  24. K. O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol.15, 1263–1287 (1997). [CrossRef]
  25. R. Kashyap, Fiber Bragg Gratings (Second Edition) (Academic Press, 2010), pp. 445.
  26. D. B. Leviton and B. J. Frey, “Temperature-dependent absolute refractive index measurements of synthetic fused silica,” in Proc. of SPIE6273, 2K/1–2K/11 (2006).
  27. N. F. Borrelli and R. A. Miller, “Determination of the individual strain-optic coefficients of glass by an ultrasonic technique.” Appl. Opt.7, 745–750 (1968). [CrossRef] [PubMed]
  28. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29, 1312–1314 (2004). [CrossRef] [PubMed]
  29. M. A. Crisfield, “A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements,” Computer Meth. Appl. Mechanics Engineer.81, 131–150 (1990). [CrossRef]
  30. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett.19, 2027–2029 (1994). [CrossRef] [PubMed]
  31. Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. R. S. C. Ryu, M. S. M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatronics15, 906–915 (2010).
  32. M. S. van der Heiden, K. R. Henken, L. K. Chen, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in “SPIE Optical Systems Design,” 85500L-1–85500L-14 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3261 KB)     
» Media 2: MOV (3358 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited