OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24139–24153

Large-area electromagnetic enhancement by a resonant excitation of surface waves on a metallic surface with periodic subwavelength patterns

Xin Zhang, Haitao Liu, and Ying Zhong  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 24139-24153 (2013)
http://dx.doi.org/10.1364/OE.21.024139


View Full Text Article

Enhanced HTML    Acrobat PDF (2477 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the electromagnetic enhancement on a metallic surface patterned with periodic subwavelength structures. Fully-vectorial calculations show a large-area electromagnetic enhancement (LAEE) on the surface, which strongly contrasts with the previously reported “hot spots” that occur in specific tiny regions and which relieves the rigorous requirement of the nano-scale location of sample molecules. The LAEE allows for designing more practicable substrates for many enhanced-spectra applications. By building up microscopic models, the LAEE is shown due to a resonant excitation of surface waves that include both the surface plasmon polariton (SPP) and a quasi-cylindrical wave (QCW). The surface waves propagate on the substrate over a long distance and thus greatly enlarge the area of electromagnetic enhancement compared to the nano-sized hot spots caused by localized modes. Gain medium is introduced to further strengthen the large-area surface-wave resonance, with which an enhancement factor (EF) of electric-field intensity up to a few thousands is achieved.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(050.6624) Diffraction and gratings : Subwavelength structures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 24, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 24, 2013
Published: October 2, 2013

Citation
Xin Zhang, Haitao Liu, and Ying Zhong, "Large-area electromagnetic enhancement by a resonant excitation of surface waves on a metallic surface with periodic subwavelength patterns," Opt. Express 21, 24139-24153 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-24139


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974). [CrossRef]
  2. W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a foundation for nanoscale optically detected biological labels,” Adv. Mater.19(20), 3100–3108 (2007). [CrossRef]
  3. S. Shanmukh, L. Jones, J. Driskell, Y. P. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” Nano Lett.6(11), 2630–2636 (2006). [CrossRef] [PubMed]
  4. W. H. Park and Z. H. Kim, “Charge transfer enhancement in the SERS of a single molecule,” Nano Lett.10(10), 4040–4048 (2010). [CrossRef] [PubMed]
  5. S. W. Zhang, H. T. Liu, and G. G. Mu, “Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate,” J. Opt. Soc. Am. A28(5), 879–886 (2011). [CrossRef] [PubMed]
  6. Y. M. Hou, J. Xu, X. J. Zhang, and D. P. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology21(19), 195203 (2010). [CrossRef] [PubMed]
  7. Z. W. Zeng and H. T. Liu, “Electromagnetic enhancement by a T-shaped metallic nano groove impact of surface plasmon polaritons and other surface waves,” IEEE J. Sel. Top. Quantum Electron.18(6), 1669–1675 (2012). [CrossRef]
  8. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009). [CrossRef]
  9. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006). [CrossRef] [PubMed]
  10. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007). [CrossRef] [PubMed]
  11. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  12. J. P. Huang and K. W. Yu, “Second-harmonic generation in graded metallic films,” Opt. Lett.30(3), 275–277 (2005). [CrossRef] [PubMed]
  13. H. Shen, B. Cheng, G. W. Lu, T. Y. Ning, D. Y. Guan, Y. L. Zhou, and Z. H. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology17(16), 4274–4277 (2006). [CrossRef] [PubMed]
  14. J. P. Camden, J. A. Dieringer, Y. M. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” J. Am. Chem. Soc.130(38), 12616–12617 (2008). [CrossRef] [PubMed]
  15. S. L. Kleinman, J. M. Bingham, A. I. Henry, K. L. Wustholz, and R. P. Van Duyne, “Structural and optical characterization of single nanoparticles and single molecule SERS,” Proc. SPIE7757, 77570J, 77570J-10 (2010). [CrossRef]
  16. S. J. Lee, J. M. Baik, and M. Moskovits, “Polarization-dependent surface-enhanced Raman scattering from a silver-nanoparticle-decorated single silver nanowire,” Nano Lett.8(10), 3244–3247 (2008). [CrossRef] [PubMed]
  17. F. Svedberg, Z. P. Li, H. X. Xu, and M. Käll, “Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation,” Nano Lett.6(12), 2639–2641 (2006). [CrossRef] [PubMed]
  18. K. Zhao, H. X. Xu, B. H. Gu, and Z. Y. Zhang, “One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced raman scattering,” J. Chem. Phys.125(8), 081102 (2006). [CrossRef] [PubMed]
  19. P. I. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B70(7), 075402 (2004). [CrossRef]
  20. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett.335(5-6), 369–374 (2001). [CrossRef]
  21. W. H. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, “Single molecule tip enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C111(4), 1733–1738 (2007). [CrossRef]
  22. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett.97(3), 036405 (2006). [CrossRef] [PubMed]
  23. H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude,” IEEE J. Sel. Top. Quantum Electron.14(6), 1565–1576 (2008). [CrossRef]
  24. Z. Y. Li and Y. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett.10(1), 243–249 (2010). [CrossRef] [PubMed]
  25. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater.9(1), 60–67 (2010). [CrossRef] [PubMed]
  26. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3(5), 1231–1237 (2009). [CrossRef] [PubMed]
  27. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997). [CrossRef]
  28. A. J. Chung, Y. S. Huh, and D. Erickson, “Large area flexible SERS active substrates using engineered nanostructures,” Nanoscale3(7), 2903–2908 (2011). [CrossRef] [PubMed]
  29. H. Ko and V. V. Tsukruk, “Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering,” Small4(11), 1980–1984 (2008). [CrossRef] [PubMed]
  30. B. H. Zhang, H. S. Wang, L. H. Lu, K. L. Ai, G. Zhang, and X. L. Cheng, “Large area silver coated silicon nanowire arrays for molecular sensing using surface enhanced raman spectroscopy,” Adv. Funct. Mater.18(16), 2348–2355 (2008). [CrossRef]
  31. N. Pazos-Pérez, W. Ni, A. Schweikart, R. A. Alvarez-Puebla, A. Fery, and L. M. Liz-Marzán, “Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids,” Chem. Sci.1(2), 174–178 (2010). [CrossRef]
  32. L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A14(10), 2758–2767 (1997). [CrossRef]
  33. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett.77(6), 1163–1166 (1996). [CrossRef] [PubMed]
  34. H. X. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics62(33 Pt B), 4318–4324 (2000). [CrossRef] [PubMed]
  35. E. D. Palik, Handbook of Optical Constants of Solids—Part II (Academic, 1985).
  36. J. R. Anema, A. G. Brolo, P. Marthandam, and R. Gordon, “Enhanced Raman scattering from nanoholes in a copper film,” J. Phys. Chem. C112(44), 17051–17055 (2008). [CrossRef]
  37. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008). [CrossRef] [PubMed]
  38. H. T. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B82(11), 115418 (2010). [CrossRef]
  39. H. T. Liu and P. Lalanne, “Comprehensive microscopic model of the extraordinary optical transmission,” J. Opt. Soc. Am. A27(12), 2542–2550 (2010). [CrossRef] [PubMed]
  40. F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature492(7429), 411–414 (2012). [CrossRef] [PubMed]
  41. P. Lalanne, J. P. Hugonin, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-lambda metallic surfaces,” Surf. Sci. Rep.64(10), 453–469 (2009). [CrossRef]
  42. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12(5), 1068–1076 (1995). [CrossRef]
  43. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A22(9), 1844–1849 (2005). [CrossRef] [PubMed]
  44. H. T. Liu, “Coherent-form energy conservation relation for the elastic scattering of a guided mode in a symmetric scattering system,” accepted for publication in Opt. Express.
  45. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett.4(10), 2015–2018 (2004). [CrossRef]
  46. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science271(5251), 933–937 (1996). [CrossRef]
  47. D. X. Dai, Y. C. Shi, S. L. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011). [CrossRef] [PubMed]
  48. D. Pisignano, M. Anni, G. Gigli, R. Cingolani, M. Zavelani-Rossi, G. Lanzani, G. Barbarella, and L. Favaretto, “Amplified spontaneous emission and efficient tunable laser emission,” Appl. Phys. Lett.81(19), 3534–3536 (2002). [CrossRef]
  49. A. Krishnan, S. P. Frisbie, L. Grave de Peralta, and A. A. Bernussi, “Plasmon stimulated emission in arrays of bimetallic structres coated with dye-doped dielectric,” Appl. Phys. Lett.96(11), 111104 (2010). [CrossRef]
  50. X. Zhang, H. T. Liu, and Y. Zhong, “Compensation of propagation loss of surface plasmon polaritons with a finite-thickness dielectric gain layer,” J. Opt.14(12), 125003 (2012). [CrossRef]
  51. C. X. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental demonstration of broadband absorption enhancement in partially aperiodic silicon nanohole structures,” http://arxiv.org/abs/1303.4781
  52. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4, 396–402 (1902).
  53. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am.31(3), 213–222 (1941). [CrossRef]
  54. P. Lalanne and H. T. Liu, “A new look at grating theories through the extraordinary optical transmission phenomenon,” in Plasmonics, Springer Series in Optical Sciences167, S. Enoch and N. Bonod eds. (Springer, 2012) 85–103.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited