OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24171–24184

Modeling of the electromagnetic field and level populations in a waveguide amplifier: a multi-scale time problem

Alexandre Fafin, Julien Cardin, Christian Dufour, and Fabrice Gourbilleau  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 24171-24184 (2013)
http://dx.doi.org/10.1364/OE.21.024171


View Full Text Article

Enhanced HTML    Acrobat PDF (4212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new algorithm based on auxiliary differential equation and finite difference time domain method (ADE-FDTD method) is presented to model a waveguide whose active layer is constituted of a silica matrix doped with rare-earth and silicon nanograins. The typical lifetime of rare-earth can be as large as some ms, whereas the electromagnetic field in a visible range and near-infrared is characterized by a period of the order of fs. Due to the large difference between these two characteristic times, the conventional ADE-FDTD method is not suited to treat such systems. A new algorithm is presented so that the steady state of rare earth and silicon nanograins electronic levels populations along with the electromagnetic field can be fully described. This algorithm is stable and applicable to a wide range of optical gain materials in which large differences of characteristic lifetimes are present.

© 2013 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.7370) Optical devices : Waveguides
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Optical Devices

History
Original Manuscript: July 22, 2013
Revised Manuscript: September 16, 2013
Manuscript Accepted: September 17, 2013
Published: October 2, 2013

Citation
Alexandre Fafin, Julien Cardin, Christian Dufour, and Fabrice Gourbilleau, "Modeling of the electromagnetic field and level populations in a waveguide amplifier: a multi-scale time problem," Opt. Express 21, 24171-24184 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-24171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag.14, 302–307 (1966). [CrossRef]
  2. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1995).
  3. W. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Techno.9, 234–250 (1991). [CrossRef]
  4. P. Kik and A. Polman, “Erbium-doped optical-waveguide amplifiers on silicon,” Mater. Res. Bull.23, 48–54 (1998).
  5. A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B21, 871–892 (2004). [CrossRef]
  6. A. J. Kenyon, P. F. Trwoga, M. Federighi, and C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys.: Condens. Matter6, 319–324 (1994). [CrossRef]
  7. M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, “1.54 m photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+,” Appl. Phys. Lett.71, 1198–1200 (1997). [CrossRef]
  8. C. Dufour, J. Cardin, O. Debieu, A. Fafin, and F. Gourbilleau, “Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method,” Nanoscale Res. Lett.6, 1–5 (2011). [CrossRef]
  9. S. C. Hagness, R. M. Joseph, and A. Taflove, “Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,” Radio Sci.31, 931–941 (1996). [CrossRef]
  10. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. comput. phys.114, 185–200 (1994). [CrossRef]
  11. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech.23, 623–630 (1975). [CrossRef]
  12. S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express12, 3827–3833 (2004). [CrossRef] [PubMed]
  13. A. E. Siegman, Lasers (University Science Books, 1986).
  14. P.G. Petropoulos, “Stability and phase error analysis of FD-TD in dispersive dielectrics,” IEEE Trans. Antennas Propag.42, 62–69 (1994). [CrossRef]
  15. A. Nagra and R. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag.46, 334–340 (1998). [CrossRef]
  16. D. Pacifici, G. Franzo, F. Priolo, F. Iacona, and L. Dal Negro, “Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification,” Phys. Rev. B67, 245301(2003). [CrossRef]
  17. H. Lee, J. Shin, and N. Park, “Performance analysis of nanocluster-Si sensitized Er doped waveguide amplifier using top-pumped 470nm LED,” Opt. Express13, 9881–9889 (2005). [CrossRef] [PubMed]
  18. V. Toccafondo, S. Faralli, and F. Di Pasquale, “Evanescent Multimode Longitudinal Pumping Scheme for Si-Nanocluster Sensitized Er3+Doped Waveguide Amplifiers,” J. Lightwave Techno.26, 3584–3591 (2008). [CrossRef]
  19. C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B108, 17740–17747 (2004). [CrossRef]
  20. D. Biallo, A. D’Orazio, and V. Petruzzelli, “Enhanced light extraction in Er3+doped SiO2-TiO2 microcavity embedded in one-dimensional photonic crystal,” J. Non-Cryst. Solids352, 3823–3828 (2006). [CrossRef]
  21. A. Fallahkhair, K. Li, and T. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Techno.26, 1423–1431 (2008). [CrossRef]
  22. P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, “A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling,” SIAM. J. Matrix Anal. & Appl.23, 15–41 (2001). [CrossRef]
  23. P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, “Hybrid scheduling for the parallel solution of linear systems,” Parallel Computing32, 136–156 (2006). [CrossRef]
  24. O. Debieu, J. Cardin, X. Portier, and F. Gourbilleau, “Effect of the Nd content on the structural and photoluminescence properties of silicon-rich silicon dioxide thin films,” Nanoscale Res. Lett.6, 1–8 (2011). [CrossRef]
  25. M. Govoni, Marri, and S. Ossicini, “Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics,” Nat. Photonics6, 672–679 (2012). [CrossRef]
  26. F. Priolo, G. Franzo, D. Pacifici, V. Vinciguerra, F. Iacona, and A. Irrera, “Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals,” J. Appl. Phys.89, 264–272 (2001). [CrossRef]
  27. P. Pirasteh, J. Charrier, Y. Dumeige, Y. G. Boucher, O. Debieu, and F. Gourbilleau, “Study of optical losses of Nd3+doped silicon rich silicon oxide for laser cavity,” Thin Solid Films520, 4026–4030 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited