OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24185–24190

Femtosecond laser nanomachining initiated by ultraviolet multiphoton ionization

Xiaoming Yu, Qiumei Bian, Zenghu Chang, P. B. Corkum, and Shuting Lei  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 24185-24190 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the experimental results of 300 nm features generated on fused silica using a near-infrared (IR) femtosecond laser pulse initiated by an ultraviolet (UV) pulse. With both pulses at a short (~60 fs) delay, the damage threshold of the UV pulse is only 10% of its normal value. Considerable reduction of UV damage threshold is observed when two pulses are at ± 1.3 ps delay. The damage feature size of the combined pulses is similar to that of a single UV pulse. A modified rate equation model with the consideration of defect states is used to help explain these results. This concept can be applied to shorter wavelengths, e.g. XUV and X-ray, with the required fluence below their normal threshold.

© 2013 Optical Society of America

OCIS Codes
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(260.7190) Physical optics : Ultraviolet
(320.2250) Ultrafast optics : Femtosecond phenomena
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

Original Manuscript: July 25, 2013
Revised Manuscript: September 17, 2013
Manuscript Accepted: September 21, 2013
Published: October 2, 2013

Xiaoming Yu, Qiumei Bian, Zenghu Chang, P. B. Corkum, and Shuting Lei, "Femtosecond laser nanomachining initiated by ultraviolet multiphoton ionization," Opt. Express 21, 24185-24190 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996). [CrossRef]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  3. M. Ali, T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl.20(3), 169–184 (2008). [CrossRef]
  4. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photon. Rev.5(3), 442–463 (2011). [CrossRef]
  5. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004). [CrossRef] [PubMed]
  6. Y. Liao, Y. Shen, L. Qiao, D. Chen, Y. Cheng, K. Sugioka, and K. Midorikawa, “Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes,” Opt. Lett.38(2), 187–189 (2013). [CrossRef] [PubMed]
  7. S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett.91(14), 141111 (2007). [CrossRef]
  8. J. M. Fernández-Pradas, C. Florian, F. Caballero-Lucas, J. L. Morenza, and P. Serra, “Femtosecond laser ablation of polymethyl-methacrylate with high focusing control,” Appl. Surf. Sci.278, 185–189 (2013). [CrossRef]
  9. D. N. Nikogosyan, M. Dubov, H. Schmitz, V. Mezentsev, I. Bennion, P. Bolger, and A. V. Zayats, “Point-by-point inscription of 250-nm-period structure in bulk fused silica by tightly-focused femtosecond UV pulses: experiment and numerical modeling,” Cent. Eur. J. Phys.8(2), 169–177 (2010). [CrossRef]
  10. J. Békési, J. H. Klein-Wiele, and P. Simon, “Efficient submicron processing of metals with femtosecond UV pulses,” Appl. Phys., A Mater. Sci. Process.76(3), 355–357 (2003). [CrossRef]
  11. J. Bonse, J. Kruger, S. Hohm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24(4), 042006 (2012). [CrossRef]
  12. X. Yu, Q. Bian, B. Zhao, Z. Chang, P. B. Corkum, and S. Lei, “Near-infrared femtosecond laser machining initiated by ultraviolet multiphoton ionization,” Appl. Phys. Lett.102(10), 101111 (2013). [CrossRef]
  13. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  14. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett.82(11), 2394–2397 (1999). [CrossRef]
  15. D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D. M. Rayner, and P. B. Corkum, “Exciton-seeded multiphoton ionization in bulk SiO(2),” Phys. Rev. B81(21), 212301 (2010). [CrossRef]
  16. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D'Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997). [CrossRef]
  17. G. M. Petrov and J. Davis, “Interaction of intense ultra-short laser pulses with dielectrics,” J. Phys. B41(2), 025601 (2008). [CrossRef]
  18. J. Peng, D. Grojo, D. M. Rayner, and P. B. Corkum, “Control of energy deposition in femtosecond laser dielectric interactions,” Appl. Phys. Lett.102(16), 161105 (2013). [CrossRef]
  19. Y. Wu, E. Cunningham, H. Zang, J. Li, M. Chini, X. Wang, Y. Wang, K. Zhao, and Z. Chang, “Generation of high-flux attosecond extreme ultraviolet continuum with a 10 TW laser,” Appl. Phys. Lett.102(20), 201104 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited