OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24201–24209

The role of stimulated Raman scattering in supercontinuum generation in bulk diamond

T. M. Kardaś, B. Ratajska-Gadomska, W. Gadomski, A. Lapini, and R. Righini  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 24201-24209 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on experimental results of supercontinuum generation in bulk diamond. The spectrum of supercontinuum generated with 800 nm pump extends up to 600 nm towards short wavelengths. We present the numerical model explaining the phenomenon, in which the role of different nonlinear effects including stimulated Raman scattering is discussed. Unlike in other materials, in diamond the feature of supercontinuum due to stimulated Raman response is apparently visible.

© 2013 OSA

OCIS Codes
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.5650) Nonlinear optics : Raman effect
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: July 29, 2013
Revised Manuscript: September 16, 2013
Manuscript Accepted: September 19, 2013
Published: October 2, 2013

T. M. Kardaś, B. Ratajska-Gadomska, W. Gadomski, A. Lapini, and R. Righini, "The role of stimulated Raman scattering in supercontinuum generation in bulk diamond," Opt. Express 21, 24201-24209 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μ J pump pulses,” Appl. Phys. B97, 561–574 (2009). [CrossRef]
  2. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature communications3, 807 (2012). [CrossRef] [PubMed]
  3. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett.78, 3282–3285 (1997). [CrossRef]
  4. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett.84, 3582–3585 (2000). [CrossRef] [PubMed]
  5. J. R. Gulley and W. M. Dennis, “Ultrashort-pulse propagation through free-carrier plasmas,” Phys. Rev. A81, 033818 (2010). [CrossRef]
  6. N. Y. Vislobokov and A. P. Sukhorukov, “Supercontinuum generation by ultra-high power femtosecond laser pulses in dielectrics,” Phys. Wave Phenom.17, 11–14 (2009). [CrossRef]
  7. A. Wu, I. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B72, 085128 (2005). [CrossRef]
  8. P. Whalen, J. V. Moloney, a. C. Newell, K. Newell, and M. Kolesik, “Optical shock and blow-up of ultrashort pulses in transparent media,” Phys. Rev. A86, 033806 (2012). [CrossRef]
  9. R. H. Stolen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276 (1973). [CrossRef]
  10. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express19, 913–22 (2011). [CrossRef] [PubMed]
  11. M. Zhi, X. Wang, and A. V. Sokolov, “Broadband coherent light generation in diamond driven by femtosecond pulses,” Opt. Express16, 12139–47 (2008). [CrossRef] [PubMed]
  12. A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee, “High-order stimulated Raman scattering in CVD single crystal diamond,” Laser Phys. Lett.4, 350–353 (2007). [CrossRef]
  13. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16, 637–650 (1999). [CrossRef]
  14. A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998). [CrossRef]
  15. G. Ghosh, Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials With Applications (Academic Press, 1998).
  16. M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical suseptibility tensor in centrosymmetric media,” Phys. Rev. B10, 4447–4463 (1974). [CrossRef]
  17. N. Akozbek, M. Scalora, C. M. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air,” Opt. Commun.191, 353–362 (2001). [CrossRef]
  18. C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett.106, 183902 (2011). [CrossRef] [PubMed]
  19. B. Ratajska-Gadomska, “Influence of the interaction between dipoles, optically induced in a crystal lattice, on the nonlinear refractive index of crystals,” Phys. Rev. B26, 1942–1958 (1982). [CrossRef]
  20. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air component,” Opt. Express17, 13429–13434 (2009). [CrossRef] [PubMed]
  21. A. M. Zheltikov, “Understanding the nonlinear phase and frequency shift of an ultrashort light pulse induced by an inertial third-order optical nonlinearity,” Phys. Rev. A79, 023823 (2009). [CrossRef]
  22. K. Lee, B. J. Sussman, J. Nunn, V. Lorenz, K. Reim, D. Jaksch, I. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diam. Relat. Mater.19, 1289–1295 (2010). [CrossRef]
  23. B. Sapoval, C. Hermann, and C. Hermann, Physics of Semiconductors (Springer, 2003).
  24. P. Ščajev, V. Gudelis, E. Ivakin, and K. Jarašiunas, “Nonequilibrium carrier dynamics in bulk HPHT diamond at two-photon carrier generation,” Phys. Status Solidi (a)208, 2067–2072 (2011). [CrossRef]
  25. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exptl. Theoret. Phys.47, 1945–1957 (1964).
  26. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.80, 4076–4079 (1998). [CrossRef]
  27. V. E. Gruzdev, “Analysis of the transparent-crystal ionization model developed by L V Keldysh,” J. Opt. Technol.71, 504–508 (2004). [CrossRef]
  28. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23, 382–384 (1998). [CrossRef]
  29. M. R. Junnarkar, “Short pulse propagation in tight focusing conditions,” Opt. Commun.195, 273–292 (2001). [CrossRef]
  30. H. Löfås, A. Grigoriev, J. Isberg, and R. Ahuja, “Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation,” AIP Advances1, 032139 (2011). [CrossRef]
  31. M. Trippenbach, W. Wasilewski, P. Kruk, G. W. Bryant, G. Fibich, and Y. Band, “An improved nonlinear optical pulse propagation equation,” Opt. Commun.210, 385–391 (2002). [CrossRef]
  32. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. of Lightwave Technol.21, 61–68 (2003). [CrossRef]
  33. A. E. Siegman, “Quasi fast Hankel transform.” Opt. Lett.1, 13–15 (1977). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited