OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24219–24230

High sensitivity UV fluorescence spectroscopy based on an optofluidic jet waveguide

Gianluca Persichetti, Genni Gesta, and Romeo Bernini  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 24219-24230 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel spectroscopic sensor based on an optofluidic liquid jet waveguide is presented. In this device, a liquid jet waveguide is generated with the solution under analysis. This stream, exploiting total internal reflection, acts as an optical waveguide confining the autofluorescence light produced by chemical or biological samples when opportunely excited. Using a self-aligned configuration, the liquid jet is directly coupled with a multimode optical fiber collecting the fluorescence towards the detection system. Experimental measurements have been performed using an UV excitation source on water solutions containing representative water pollutants as aromatic hydrocarbons or bacteria showing very low limit of detection.

© 2013 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:

Original Manuscript: July 11, 2013
Revised Manuscript: August 30, 2013
Manuscript Accepted: August 30, 2013
Published: October 3, 2013

Gianluca Persichetti, Genni Gesta, and Romeo Bernini, "High sensitivity UV fluorescence spectroscopy based on an optofluidic jet waveguide," Opt. Express 21, 24219-24230 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum.74(8), 3597–3619 (2003). [CrossRef]
  2. R. K. Henderson, A. Baker, K. R. Murphy, A. Hambly, R. M. Stuetz, and S. J. Khan, “Fluorescence as a potential monitoring tool for recycled water systems: A review,” Water Res.43(4), 863–881 (2009). [CrossRef] [PubMed]
  3. P. Karlitschek, F. Lewitzka, U. Bünting, M. Niederkrüger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B67(4), 497–504 (1998). [CrossRef]
  4. D. Patra, “Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons,” Appl. Spectrosc. Rev.38(2), 155–185 (2003). [CrossRef]
  5. P. J. Hargis, T. J. Sobering, G. C. Tisone, J. S. Wagner, S. A. Young, and R. J. Radloff, “Ultraviolet fluorescence identification of protein, DNA, and bacteria,” Proc. SPIE2366, 147–153 (1995). [CrossRef]
  6. L. Leblanc and E. Dufour, “Monitoring the identity of bacteria using their intrinsic fluorescence,” FEMS Microbiol. Lett.211(2), 147–153 (2002). [CrossRef] [PubMed]
  7. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta601(2), 141–155 (2007). [CrossRef] [PubMed]
  8. C. Vannahme, S. Klinkhammer, U. Lemmer, and T. Mappes, “Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers,” Opt. Express19(9), 8179–8186 (2011). [CrossRef] [PubMed]
  9. W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express12(26), 6446–6455 (2004). [CrossRef] [PubMed]
  10. A. Chen, M. M. Eberle, E. J. Lunt, S. Liu, K. Leake, M. I. Rudenko, A. R. Hawkins, and H. Schmidt, “Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip,” Lab Chip11(8), 1502–1506 (2011). [CrossRef] [PubMed]
  11. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express15(20), 12783–12791 (2007). [CrossRef] [PubMed]
  12. A. E. Vasdekis and G. P. J. Laporte, “Enhancing single molecule imaging in optofluidics and microfluidics,” Int. J. Mol. Sci.12(12), 5135–5156 (2011). [CrossRef] [PubMed]
  13. J. Wu, G. Zheng, and L. M. Lee, “Optical imaging techniques in microfluidics and their applications,” Lab Chip12(19), 3566–3575 (2012). [CrossRef] [PubMed]
  14. G. Persichetti, G. Testa, and R. Bernini, “Optofluidic jet waveguide for laser-induced fluorescence spectroscopy,” Opt. Lett.37(24), 5115–5117 (2012). [CrossRef] [PubMed]
  15. B. Richerzhagen, “Chip singulation process with a water-jet guided laser,” Solid State Technol.44, 25–28 (2001).
  16. S. Folestad, L. Johnson, B. Josefsson, and B. Galle, “Laser-induced fluorescence detection for conventional and microcolumn liquid chromatography,” Anal. Chem.54(6), 925–929 (1982). [CrossRef]
  17. J. W. S. Rayleigh, “On the instability of jets,” Proc. Lond. Math. Soc.10(1), 4–13 (1878). [CrossRef]
  18. D. Colladon, “On the reflections of a ray of light inside a parabolic liquid stream,” CR (East Lansing, Mich.)15, 800–802 (1842).
  19. R. J. van de Nesse, N. H. Velthorst, U. A. Th. Brinkman, and C. Gooijer, “Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation,” J. Chromatogr. A704(1), 1–25 (1995). [CrossRef]
  20. P. C. H. Li, Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery (Taylor and Francis/CRC Press 2006), Chap. 7.
  21. K. M. Awati and T. Howes, “Stationary waves on cylindrical fluid jets,” Am. J. Phys.64(6), 808–811 (1996).
  22. Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett.98(9), 091104 (2011). [CrossRef] [PubMed]
  23. S. Rajendran, M. A. Jog, and R. M. Manglik, “Experimental investigation of liquid jet breakup at low Weber number” in ILASS Americas,24th Annual Conference on Liquid Atomization and Spray Systems, (San Antonio, TX, 2012), pp. 1–6.
  24. J. Inczedy, T. Lengyel, and A. M. Ure, Compendium of analytical nomenclature. The orange book, 3rd edn., (Blackwell, Oxford 1998).
  25. L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, “Ultraviolet fluorescence of water and highly diluted aqueous media,” Phys. Wave Phenom.17(1), 21–31 (2009). [CrossRef]
  26. J. L. Shennan, “Hydrocarbons as substrates in industrial fermentation,” in Petroleum Microbiology R.M. Atlas, ed. (Macmillan Publishing Company, 1984).
  27. N. Billinton and A. W. Knight, “Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem.291(2), 175–197 (2001). [CrossRef] [PubMed]
  28. E. T. Arakawa, N. V. Lavrik, and P. G. Datskos, “Detection of anthrax simulants with microcalorimetric spectroscopy: Bacillus subtilis and Bacillus cereus spores,” Appl. Opt.42(10), 1757–1762 (2003). [CrossRef] [PubMed]
  29. A. B. Herzog, S. D. McLennan, A. K. Pandey, C. P. Gerba, C. N. Haas, J. B. Rose, and S. A. Hashsham, “Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health,” Appl. Environ. Microbiol.75(19), 6331–6339 (2009). [CrossRef] [PubMed]
  30. R. Meidinger, R. W. St. Germain, V. Dohotariu, and G. D. Gillispie, Field Screening Methods for Hazardous Wastes and Toxic Chemicals (Air & Waste Management Association, 1993), Chap. Fluorescence of Aromatic Hydrocarbons in Aqueous Solutions.
  31. J. Sinfield, H. Hemond, J. Germaine, B. Johnson, and J. Bloch, “Contaminant detection, identification, and quantification using a microchip laser fluorescence sensor,” J. Environ. Eng.133(3), 346–351 (2007). [CrossRef]
  32. U.S. Environmental Protection Agency, 2012Edition of the Drinking Water Standards and Health Advisories, EPA 822-S-12–001, http://water.epa.gov/action/advisories/drinking/upload/dwstandards2012.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited