OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24300–24308

Non-poissonian formation of multiple excitons in photoexcited CdTe colloidal quantum qots by femtosecond nonresonant two-photon absorption

Andrey Gandman, Michal Bronstein-Tojen, Viki Kloper, Merav Muallem, Diana Yanover, Efrat Lifshitz, and Zohar Amitay  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 24300-24308 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (799 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using direct multiexcitonic spectroscopy, we experimentally observe for the first time the non-Poissonian formation of multiple excitons by femtosecond nonresonant two-photon absorption process in semiconductor colloidal quantum dots (QDs). Each of the multiple excitons is individually generated via the absorption of a pair of photons during the femtosecond pulse irradiation. The non-Poissonian distribution of the generated excitons is reflected as a non-quadratic dependence on the pulse intensity of the average number of excitons per QD. This is the main observation of the present work. It is explained by a multiexcitonic formation model that is based on the phenomenon of intrapulse state filling of the few quantum electronic states accessed by the two-photon transitions. The experiments are conducted with 3.9-nm CdTe QDs in room-temperature hexane solution using the femtosecond pump-probe transient absorption technique, where an intense pump pulse generates the excitons and a weak probe pulse measures their number via intraband one-photon absorption.

© 2013 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Nonlinear Optics

Original Manuscript: July 31, 2013
Manuscript Accepted: September 3, 2013
Published: October 3, 2013

Andrey Gandman, Michal Bronstein-Tojen, Viki Kloper, Merav Muallem, Diana Yanover, Efrat Lifshitz, and Zohar Amitay, "Non-poissonian formation of multiple excitons in photoexcited CdTe colloidal quantum qots by femtosecond nonresonant two-photon absorption," Opt. Express 21, 24300-24308 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Klimov, Nanocrystal Quantum Dots (CRC, 2010). [CrossRef]
  2. E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kartner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption in semiconductor saturable absorber mirrors,” Appl. Phys. Lett.74, 3927 (1999). [CrossRef]
  3. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo,” Science300, 1434 (2003). [CrossRef] [PubMed]
  4. K. I. Kang, B. P. McGinnis, Sandalphon, Y. Z. Hu, S. W. Koch, N. Peyghambarian, A. Mysyrowicz, L. C. Liu, and S. H. Risbud, “Confinement-induced valence-band mixing in CdS quantum dots observed by two-photon spectroscopy,” Phys. Rev. B45, 3465–3468 (1992). [CrossRef]
  5. R. Tommasi, M. Lepore, M. Ferrara, and I. M. Catalano, “Observation of high-index states in CdS1−x Sex semi-conductor microcrystallites by two-photon spectroscopy,” Phys. Rev. B46, 12261–12265 (1992). [CrossRef]
  6. M. E. Schmidt, S. A. Blanton, M. A. Hines, and P. Guyot-Sionnest, “Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals,” Phys. Rev. B53, 12629–12632 (1996). [CrossRef]
  7. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, “Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots,” Phys. Rev. B75, 075325 (2007). [CrossRef]
  8. G. S. He, K. -T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express15, 12818 (2007). [CrossRef] [PubMed]
  9. S. -C. Pu, M. -J. Yang, C. -C. Hsu, C. -W. Lai, C. -C. Hsieh, S. H. Lin, Y. -M. Cheng, and P. -T. Chou, “The Empirical Correlation Between Size and Two-Photon Absorption Cross Section of CdSe and CdTe Quantum Dots.” Small2, 1308 (2006). [CrossRef] [PubMed]
  10. L. Pan, N. Tamai, K. Kamada, and S. Deki, “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett.91, 051902 (2007). [CrossRef]
  11. Y. Qu and W. Ji, “Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence,” J. Opt. Soc. Am. B26, 1897 (2009).
  12. J. Khatei, C. S. Suchand Sandeep, R. Philip, and K. S. R. Koteswara Rao, “Near-resonant two-photon absorption in luminescent CdTe quantum dots,” Appl. Phys. Lett.100, 081901 (2012). [CrossRef]
  13. A. D. Lad, P. P. Kiran, D. More, G. Ravindra Kumar, and S. Mahamuni, “Two-photon absorption in ZnSe and ZnSe/ZnS core/shell quantum structures,” Appl. Phys. Lett.92, 043126 (2008). [CrossRef]
  14. S. A. Blanton, A. Dehestani, P. C. Lin, and P. Guyot-Sionnest, “Photoluminescence of single semiconductor nanocrystallites by two-photon excitation microscopy,” Chem. Phys. Lett.229, 317–322 (1994). [CrossRef]
  15. G. Xing, W. Ji, Y. Zheng, and J. Y. Ying, “Two- and three-photon absorption of semiconductor quantum dots in the vicinity of half of lowest exciton energy,” Appl. Phys. Lett.93, 241114 (2008). [CrossRef]
  16. J. He, J. Mi, H. Li, and W. Ji, “Observation of Interband Two-Photon Absorption Saturation in CdS Nanocrystals,” J. Phys. Chem. B109, 19184–19187 (2005). [CrossRef]
  17. Y. Qu, W. Ji, Y. Zheng, and J. Y. Ying, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett.90, 133112 (2007). [CrossRef]
  18. V. I. Klimov, “Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals,” Annu. Rev. Phys. Chem.58, 635 (2007). [CrossRef]
  19. A. J. Nozik, “Multiple exciton generation in semiconductor quantum dots,” Chem. Phys. Lett.457, 3–11 (2009). [CrossRef]
  20. J. A. McGuire, J. Joo, J. M. Pietryga, R. D. Schaller, and V. I. Klimov, “New aspects of carrier multiplication in semiconductor nanocrystals,” Acc. Chem. Res.41, 1810 (2008).
  21. V. Kloper, R. Osovsky, J. Kolny-Olesiak, A. Sashchiuk, and E. Lifshitz, “The growth of CdTe nanocrystals using in situ formed Cd0 crystalline particles,” J. Phys. Chem. C111, 10336 (2007). [CrossRef]
  22. R. Osovsky, V. Kloper, J. Kolny-Olesiak, A. Sashchiuk, and E. Lifshitz, “The Influience of small deviation from a spherical shape on the electronic and optical properties of CdTe nanocrystal quantum dots,” J. Phys. Chem. C111, 10841 (2007). [CrossRef]
  23. H. Zhu, N Song, W. Rodriguez-Cordoba, and T. Lian, “Wave Function Engineering for Efficient Extraction of up to Nineteen Electrons from One CdSe/CdS Quasi-Type II Quantum Dot,” J. Am. Chem. Soc.134, 4250–4257 (2012). [CrossRef] [PubMed]
  24. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots,” Science287, 1011–1013 (2000). [CrossRef] [PubMed]
  25. R. Osovsky, D. Cheskis, V. Kloper, A. Sashchiuk, M. Kroner, and E. Lifshitz, “Continuous-Wave Pumping of Multiexciton Bands in the Photoluminescence Spectrum of a Single CdTe-CdSe Core-Shell Colloidal Quantum Dot,” Phys. Rev. Lett.102, 197401 (2009). [CrossRef] [PubMed]
  26. S. L. Sewall, R. R. Cooney, E. A. Dias, P. Tyagi, and P. Kambhampati, “State-resolved observation in real time of the structural dynamics of multiexcitons in semiconductor nanocrystals,” Phys. Rev. B84, 235304 (2011). [CrossRef]
  27. M. R. Salvador, M. A. Hines, and G. D. Scholes, “Exciton-bath coupling and inhomogeneous broadening in the optical spectroscopy of semiconductor quantum dots,” J. Chem. Phys.118, 9380–9388 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited