OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24332–24343

Cavity-enhanced spectroscopy of a rare-earth-ion-doped crystal: Observation of a power law for inhomogeneous broadening

Hayato Goto, Satoshi Nakamura, Mamiko Kujiraoka, and Kouichi Ichimura  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 24332-24343 (2013)
http://dx.doi.org/10.1364/OE.21.024332


View Full Text Article

Enhanced HTML    Acrobat PDF (909 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate cavity-enhanced spectroscopy of a rare-earth-ion-doped crystal (Pr3+:Y2SiO5). We succeeded in observing very small absorption due to the ions appropriately prepared by optical pumping, which corresponds to the single-pass absorption of 4 × 10−6. We also observed a power law for the inhomogeneous broadening of optical transitions of ions in the crystal. Compared with a theoretical model, the result of the power law indicates that the dominant origin of the inhomogeneous broadening may be some charged defects.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.5690) Materials : Rare-earth-doped materials
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Materials

History
Original Manuscript: September 19, 2013
Manuscript Accepted: September 24, 2013
Published: October 3, 2013

Citation
Hayato Goto, Satoshi Nakamura, Mamiko Kujiraoka, and Kouichi Ichimura, "Cavity-enhanced spectroscopy of a rare-earth-ion-doped crystal: Observation of a power law for inhomogeneous broadening," Opt. Express 21, 24332-24343 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-24332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Kaplyanskii and R. M. Macfarlane, Spectroscopy of Solids Containing Rare-Earth Ions (North-Holland, 1987).
  2. G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, 2005).
  3. E. Fraval, M. J. Sellars, and J. J. Longdell, “Method of extending hyperfine coherence times in Pr3+:Y2SiO5,” Phys. Rev. Lett.92, 077601 (2004). [CrossRef]
  4. E. Fraval, M. J. Sellars, and J. J. Longdell, “Dynamic decoherence control of a solid-state nuclear-quadrupole qubit,” Phys. Rev. Lett.95, 030506 (2005). [CrossRef] [PubMed]
  5. S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, “Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques,” Phys. Rev. A80, 032308 (2009). [CrossRef]
  6. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2001). [CrossRef]
  7. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005). [CrossRef] [PubMed]
  8. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature465, 1052–1056 (2010). [CrossRef] [PubMed]
  9. M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, “Storage and recall of weak coherent optical pulses with an efficiency of 25%,” Phys. Rev. Lett.105, 060501 (2010). [CrossRef]
  10. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010). [CrossRef] [PubMed]
  11. H. Goto and K. Ichimura, “Population transfer via stimulated Raman adiabatic passage in a solid,” Phys. Rev. A74, 053410 (2006). [CrossRef]
  12. H. Goto and K. Ichimura, “Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal,” Phys. Rev. A75, 033404 (2007). [CrossRef]
  13. J. Klein, F. Beil, and T. Halfmann, “Robust population transfer by stimulated Raman adiabatic passage in a Pr3+:Y2SiO5,” Phys. Rev. Lett.99, 113003 (2007). [CrossRef]
  14. A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, “Stimulated Raman adiabatic passage in Tm3+:YAG,” Phys. Rev. B78, 144407 (2008). [CrossRef]
  15. J. J. Longdell, M. J. Sellars, and N. B. Manson, “Demonstration of conditional quantum phase shift between ions in a solid,” Phys. Rev. Lett.93, 130503 (2004). [CrossRef] [PubMed]
  16. K. Ichimura, “A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode,” Opt. Commun.196, 119–125 (2001). [CrossRef]
  17. M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, “Cavity dark states for quantum computing,” Opt. Commun.195, 411–417 (2001). [CrossRef]
  18. Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity-QED,” Phys. Rev. A70, 042314 (2004). [CrossRef]
  19. Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, “Quantum CPF gates between rare earth ions through measurement,” Phys. Lett. A330, 137–141 (2004). [CrossRef]
  20. D. L. McAuslan, J. J. Longdell, and M. J. Sellars, “Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: what you can do with a weak oscillator,” Phys. Rev. A80, 062307 (2009). [CrossRef]
  21. P. R. Berman, Cavity Quantum Electrodynamics(Academic, 1994).
  22. R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup, “Optical detection of a single rare-earth ion in a crystal,” Nat. Commun.3, 1029 (2012). [CrossRef] [PubMed]
  23. C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars, and S. Rogge, “Optical addressing of an individual erbium ion in silicon,” Nature497, 91–94 (2013). [CrossRef] [PubMed]
  24. C. Greiner, B. Boggs, and T.W. Mossberg, “Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity,” Phys. Rev. Lett.85, 3793–3796 (2000). [CrossRef] [PubMed]
  25. C. Greiner, T. Wang, T. Loftus, and T.W. Mossberg, “Instability and pulse area quantization in accelerated super-radiant atom-cavity systems,” Phys. Rev. Lett.87, 253602 (2001). [CrossRef]
  26. C. Greiner, B. Boggs, and T. W. Mossberg, “Frustrated pulse-area quantization in accelerated superradiant atom-cavity systems,” Phys. Rev. A67, 063811 (2003). [CrossRef]
  27. K. Ichimura and H. Goto, “Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode,” Phys. Rev. A74, 033818 (2006). [CrossRef]
  28. D. L. McAuslan, D. Korystov, and J. J. Longdell, “Coherent spectroscopy of rare-earth-metal-ion-doped whispering-gallery-mode resonators,” Phys. Rev. A83, 063847 (2011). [CrossRef]
  29. H. Goto, S. Nakamura, and K. Ichimura, “Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5,” Opt. Exp.18, 23763 (2010). [CrossRef]
  30. A. M. Stoneham, “Shapes of inhomogeneously broadened resonance lines in solids,” Rev. Mod. Phys.41, 82–108 (1969). [CrossRef]
  31. R. W. Equall, R. L. Cone, and R. M. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5,” Phys. Rev. B52, 3963–3969 (1995). [CrossRef]
  32. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem.B31, 97–105 (1983). [CrossRef]
  33. M. Lovrić, P. Glasenapp, and D. Suter, “Spin Hamiltonian characterization and refinement for Pr3+:YAlO3and Pr3+:Y2SiO5,” Phys. Rev. B85, 014429 (2012). [CrossRef]
  34. M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5,” Phys. Rev. B70, 214116 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited