OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24344–24367

Nonlinear spectral management: Linearization of the lossless fiber channel

Jaroslaw E. Prilepsky, Stanislav A. Derevyanko, and Sergei K. Turitsyn  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 24344-24367 (2013)
http://dx.doi.org/10.1364/OE.21.024344


View Full Text Article

Enhanced HTML    Acrobat PDF (6458 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the integrable nonlinear Schrödinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called “eigenvalue communication” idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed.

© 2013 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 5, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 14, 2013
Published: October 4, 2013

Citation
Jaroslaw E. Prilepsky, Stanislav A. Derevyanko, and Sergei K. Turitsyn, "Nonlinear spectral management: Linearization of the lossless fiber channel," Opt. Express 21, 24344-24367 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-24344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford University Press, 1995).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2006).
  3. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15, 1351–1353 (1990). [CrossRef] [PubMed]
  4. A. Mecozzi, “Limits to the long haul coherent transmission set by the Kerr nonlinearity and noise of in-line amplifiers,” J. Lightwave Technol.12, 1993–2000 (1994). [CrossRef]
  5. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411, 1027–1030 (2001). [CrossRef] [PubMed]
  6. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” J. Lightwave Technol.24, 4697–4710 (2006). [CrossRef]
  7. R.-J. Essiambre, G. Foschini, G. Kramer, and P. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett.101, 163901 (2008). [CrossRef] [PubMed]
  8. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol.28, 423–433 (2010). [CrossRef]
  9. D. J. Richardson, “Filling the light pipe,” Science330, 327–328 (2010). [CrossRef] [PubMed]
  10. R. I. Killey and C. Behrens, “Shannon’s theory in nonlinear systems,” J. Mod. Opt.58, 1–10 (2011). [CrossRef]
  11. A. Mecozzi and R.-J. Essiambre, “Nonlinear Shannon limit in pseudo-linear coherent systems,” J. Lightwave Technol.30, 2011–2024 (2012). [CrossRef]
  12. K. S. Turitsyn and S. K. Turitsyn, “Nonlinear communication channels with capacity above the linear Shannon limit,” Opt. Lett.37, 3600–3602 (2012). [CrossRef] [PubMed]
  13. see Impact of nonlinearities on fiber-optic communication systems, Ed. S. Kumar, (Springer, 2011). [CrossRef]
  14. A. Splett, C. Kurtzke, and K. Petermann, “Ultimate transmission capacity of amplified optical fiber communication systems taking into account fiber nonlinearities,” in Tech. Digest of European Conference on Optical Communication, 1993, paper MoC2.4.
  15. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express19, 3449–3454 (2011). [CrossRef] [PubMed]
  16. E. Ip and J. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26, 3416–3425 (2008). [CrossRef]
  17. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron.16, 1217–1226 (2010). [CrossRef]
  18. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express15, 15777–15810 (2008). [CrossRef]
  19. S. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2010).
  20. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16, 841–859 (2008). [CrossRef] [PubMed]
  21. L. B. Y. Du and A. J. Lowery, “Pilot-based XPM nonlinearity compensator for CO-OFDM systems,” Opt. Express19, B862–B869 (2011). [CrossRef]
  22. L. B. Du, M. M. Morshed, and A. J. Lowery, “Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation,” Opt. Express20, 19921–19927 (2012). [CrossRef] [PubMed]
  23. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics7, 560–568 (2013). [CrossRef]
  24. H. Cheng, W. Li, Y. Fan, Z. Zhang, S. Yu, and Z. Yang, “A novel fiber nonlinearity suppression method in DWDM optical fiber transmission systems with an all-optical pre-distortion module,” Opt. Comm.290, 152–157 (2013). [CrossRef]
  25. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet Physics-JETP34, 62–69 (1972).
  26. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems,” Stud. Appl. Math.53, 249–315 (1974).
  27. A. C. Newell, Solitons in Mathematics and Physics (SIAM, 1985). [CrossRef]
  28. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. The Inverse Scattering Method(Colsultants Bureau, 1984).
  29. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, 1981). [CrossRef]
  30. M. I. Yousefi and F. R. Kschischang, “Information transmission using the nonlinear Fourier transform, Part I: Mathematical tools,” http://arxiv.org/abs/1202.3653 , submitted to IEEE Trans. Inf. Theory, Feb. 2012; “Part II: Numerical methods,” Apr. 2012, online: http://arxiv.org/abs/1204.0830 , submitted to IEEE Trans. Inf. Theory, Feb. 2012; “Part III: Spectrum modulation,” Feb. 2013, online: http://arxiv.org/abs/1302.2875 , submitted to IEEE Trans. Inf. Theory, Feb. 2013.
  31. D. J. Kaup, “Closure of the squared Zakharov-Shabat eigenstates,” J. Math. Anal. Appl.54, 849–864 (1976). [CrossRef]
  32. L. F. Mollenauer and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press, 2006).
  33. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003).
  34. A. Hasegawa and T. Nyu, “Eigenvalue communication,” J. Lightwave Technol.11, 395–399 (1993). [CrossRef]
  35. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Lattice approach to the dynamics of phase-coded soliton trains,” J. Phys. A: Math. Theor.45, 025202 (2012). [CrossRef]
  36. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Temporal solitonic crystals and non-Hermitian informational lattices,” Phys. Rev. Lett.108, 183902 (2012). [CrossRef] [PubMed]
  37. J. Satsuma and N. Yadjima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Progr. Theor. Phys. Suppl.55, 284–306 (1974). [CrossRef]
  38. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quant. Electron.35, 1105–1115 (1999). [CrossRef]
  39. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Networking7, 234–255 (2008). [CrossRef]
  40. R. Bouziane, P. Milder, R. Koutsoyannis, Y. Benlachtar, J. C. Hoe, M. Puschel, M. Glick, and R. I. Kille, “Design studies for ASIC implementations of 28 GS/s optical QPSK- and 16-QAM-OFDM transceivers,” Opt. Express19, 20857–20864 (2011). [CrossRef] [PubMed]
  41. S. Herbst, S. Bayer, H. Wernz, and H. Griesser, “21-GHz single-band OFDM transmitter with QPSK modulated subcarriers,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, IEEE, 2011, paper OMS3.
  42. A.H. Gnauk and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23, 115–130 (2005). [CrossRef]
  43. S.V. Manakov, “On nonlinear Fraunhofer diffraction,” Soviet Physics-JETP38, 693–696 (1974).
  44. S. A. Derevyanko and J. E. Prilepsky, “Soliton generation from randomly modulated return-to-zero pulses,” Opt. Comm.281, 5439–5443 (2008). [CrossRef]
  45. S. A. Derevyanko and J. E. Prilepsky, “Random input problem for the nonlinear Schrodinger equation,” Phys. Rev. E78, 046610 (2008). [CrossRef]
  46. M. Klaus and J. K. Shaw, “Purely imaginary eigenvalues of Zakharov-Shabat systems,” Phys. Rev. E65, 036607 (2002). [CrossRef]
  47. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Conversion of a chirped Gaussian pulse to a soliton or a bound multisoliton state in quasilossless and lossy optical fiber spans,” J. Opt. Soc. Am. B24, 1254–1261 (2007). [CrossRef]
  48. S. K. Turitsyn and S. A. Derevyanko, “Soliton-based discriminator of noncoherent optical pulses,” Phys. Rev. A78, 063819 (2008). [CrossRef]
  49. S. Vergeles and S. K. Turitsyn, “Optical rogue waves in telecommunication data streams,” Phys. Rev. A83, 061801(R) (2011). [CrossRef]
  50. S. K. Turitsyn, M. Sorokina, and S. Derevyanko, “Dispersion-dominated nonlinear fiber-optic channel,” Opt. Lett.37, 2931–2933 (2012). [CrossRef] [PubMed]
  51. G. Boffetta and A. R. Osborne, “Computation of the direct scattering transform for the nonlinear Schroedinger equation,” J. Comput. Phys.102, 252–264 (1992). [CrossRef]
  52. S. Oda, A. Maruta, and K. Kitayama, “All-Optical Quantization Scheme Based on Fiber Nonlinearity,” IEEE Photon. Technol. Lett.16, 587–589 (2004). [CrossRef]
  53. H. Terauchi and A. Maruta, “Eigenvalue Modulated Optical Transmission System Based on Digital Coherent Technology,” in 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), IEICE, 2013, paper WR2-5.
  54. O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, “Efficient numerical method of the fiber Bragg grating synthesis,” J. Opt. Soc. Am. B24, 1451–1457 (2007). [CrossRef]
  55. A. O. Korotkevich and P. M. Lushnikov, “Proof-of-concept implementation of the massively parallel algorithm for simulation of dispersion-managed WDM optical fiber systems,” Opt. Lett.36, 1851–1853 (2011). [CrossRef] [PubMed]
  56. M. Van Barel, G. Heinig, and P. Kravanja, “A stabilized superfast solver for nonsymmetric Toeplitz systems,” SIAM J. Matrix Anal. Appl.23, 494–510 (2001). [CrossRef]
  57. S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, “A superfast algorithm for Toeplitz systems of linear equations,” SIAM J. Matrix. Anal. Appl.29, 1247–1266 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited