OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24398–24412

Simplified model for optical rectification of broadband terahertz pulses in lossy waveguides including a new generalized expression for the coherence length

Felipe A. Vallejo and L. Michael Hayden  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 24398-24412 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5980 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simplified coupled mode theory (CMT), suited for high losses, to describe ultra-broadband THz generation through optical rectification (OR) of fs infrared pulses in waveguides. We derive a new expression that incorporates loss effects into the coherence length for OR. The simplified approach reproduces the results of a computationally rigorous integral CMT that must be used for broadband THz generation. With the new model we perform a parametric study to establish the optimal conditions for OR in symmetric, five-layer, metal/cladding/core structures with electro optic polymer cores. We find conversion efficiencies as high as 35 × 10−4 W−1 and bandwidths up to 20 THz when pumping at 1900 nm. We find that low-loss-cladding layers enhance the efficiency for phase-matched structures, increase the interaction length, and improve the stability of the efficiency with respect to variations in waveguide parameters.

© 2013 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Terahertz Optics

Original Manuscript: July 30, 2013
Revised Manuscript: September 18, 2013
Manuscript Accepted: September 24, 2013
Published: October 4, 2013

Felipe A. Vallejo and L. Michael Hayden, "Simplified model for optical rectification of broadband terahertz pulses in lossy waveguides including a new generalized expression for the coherence length," Opt. Express 21, 24398-24412 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. A. Vallejo and L. M. Hayden, “Design of ultra-broadband terahertz polymer waveguide emitters for telecom wavelengths using coupled mode theory,” Opt. Express21(5), 5842–5858 (2013). [CrossRef] [PubMed]
  2. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express14(6), 2263–2276 (2006). [CrossRef] [PubMed]
  3. V. A. Kukushkin, “Efficient generation of terahertz pulses from single infrared beams in C/GaAs/C waveguiding heterostructures,” J. Opt. Soc. Am. B23(12), 2528–2534 (2006). [CrossRef]
  4. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express17(16), 13502–13515 (2009). [CrossRef] [PubMed]
  5. C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, and A. K.-Y. Jen, “Wideband 15 THz response using organic electrooptic polymer emitter-sensor pairs at communications wavelengths,” Appl. Phys. Lett.92(15), 151107 (2008). [CrossRef]
  6. J. B. Khurgin and G. Sun, “The case for using gap plasmon-polaritons in second-order optical nonlinear processes,” Opt. Express20(27), 28717–28723 (2012). [CrossRef] [PubMed]
  7. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B23(9), 1822–1835 (2006). [CrossRef]
  8. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett.69(16), 2321–2323 (1996). [CrossRef]
  9. H. Cao, R. A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Opt. Lett.29(15), 1751–1753 (2004). [CrossRef] [PubMed]
  10. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys.109(4), 043505 (2011). [CrossRef]
  11. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B4(6), 968–976 (1987). [CrossRef]
  12. Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79(3), 035120 (2009). [CrossRef]
  13. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater.14(19), 1339–1365 (2002). [CrossRef]
  14. Y.-F. Li and J. W. Y. Lit, “General formulas for the guiding properties of a multilayer slab waveguide,” J. Opt. Soc. Am. A4(4), 671–677 (1987). [CrossRef]
  15. R. E. Smith, G. W. Forbes, and S. N. Houde-Walter, “Unfolding the multivalued planar waveguide dispersion relation,” IEEE J. Quantum Electron.29(4), 1031–1034 (1993). [CrossRef]
  16. X. Ying and I. Katz, “A simple reliable solver for all the roots of a nonlinear function in a given domain,” Computing41(4), 317–333 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited