OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 24413–24421

Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle

Yunfeng Jiang, Kaikai Huang, and Xuanhui Lu  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 24413-24421 (2013)
http://dx.doi.org/10.1364/OE.21.024413


View Full Text Article

Enhanced HTML    Acrobat PDF (2230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The radiation force of circular Airy beams (CAB) on a dielectric Rayleigh particle is investigated in this paper. Our results show that the CAB can be used to trap the particle whose refractive index is larger than the ambient at different positions along the beam axis. Comparing with the Gaussian beam under the same conditions, the longitudinal and the transverse gradient force of CAB on the Rayleigh particle are increased, and the particle can be trapped more stable. Our analyses also demonstrate that the trapping properties of CAB can be modulated by controlling corresponding parameters of CAB.

© 2013 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.5500) Other areas of optics : Propagation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: August 19, 2013
Revised Manuscript: September 22, 2013
Manuscript Accepted: September 25, 2013
Published: October 4, 2013

Citation
Yunfeng Jiang, Kaikai Huang, and Xuanhui Lu, "Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle," Opt. Express 21, 24413-24421 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-24413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett.35(23), 4045–4047 (2010). [CrossRef] [PubMed]
  2. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett.36(10), 1842–1844 (2011). [CrossRef] [PubMed]
  3. I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. G. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett.36(18), 3675–3677 (2011). [CrossRef] [PubMed]
  4. J. A. Davis, D. M. Cottrell, and D. Sand, “Abruptly autofocusing vortex beams,” Opt. Express20(12), 13302–13310 (2012). [CrossRef] [PubMed]
  5. Y. F. Jiang, K. K. Huang, and X. H. Lu, “Propagation dynamics of abruptly autofocusing Airy beams with optical vortices,” Opt. Express20(17), 18579–18584 (2012). [CrossRef] [PubMed]
  6. S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett.38(14), 2416–2418 (2013). [CrossRef] [PubMed]
  7. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. G. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett.36(15), 2883–2885 (2011). [CrossRef] [PubMed]
  8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  9. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers,” Nature348(6299), 348–352 (1990). [CrossRef] [PubMed]
  10. L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature387(6630), 308–312 (1997). [CrossRef] [PubMed]
  11. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997). [CrossRef] [PubMed]
  12. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005). [CrossRef] [PubMed]
  13. P. Zemanek and C. J. Foot, “Atomic dipole trap formed by blue detuned strong Gaussian standing wave,” Opt. Commun.146(1-6), 119–123 (1998). [CrossRef]
  14. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996). [CrossRef]
  15. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  16. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett.75(5), 826–829 (1995). [CrossRef] [PubMed]
  17. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature419(6903), 145–147 (2002). [CrossRef] [PubMed]
  18. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008). [CrossRef]
  19. Q. W. Zhan, “Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams,” J. Opt. A, Pure Appl. Opt.5(3), 229–232 (2003). [CrossRef]
  20. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett.32(11), 1393–1395 (2007). [CrossRef] [PubMed]
  21. Y. F. Jiang, K. K. Huang, and X. H. Lu, “Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle,” Opt. Express19(10), 9708–9713 (2011). [CrossRef] [PubMed]
  22. C. L. Zhao, Y. J. Cai, X. H. Lu, and H. T. Eyyuboğlu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express17(3), 1753–1765 (2009). [CrossRef] [PubMed]
  23. C. L. Zhao and Y. J. Cai, “Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam,” Opt. Lett.36(12), 2251–2253 (2011). [CrossRef] [PubMed]
  24. Z. R. Liu and D. M. Zhao, “Radiation forces acting on a Rayleigh dielectric sphere produced by highly focused elegant Hermite-cosine-Gaussian beams,” Opt. Express20(3), 2895–2904 (2012). [CrossRef] [PubMed]
  25. I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett.36(10), 1890–1892 (2011). [CrossRef] [PubMed]
  26. W. H. Carter, “Electromagnetic Field of a Gaussian Beam with an Elliptical Cross Section,” J. Opt. Soc. Am.62(10), 1195–1201 (1972). [CrossRef]
  27. J. W. Goodman, Introduction to Fourier Optics, (Roberts & Company Publishers, 2005).
  28. F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, The NIST Handbook of Mathematical Functions, (Cambridge University Press, 2010).
  29. D. Leseberg, “Computer-generated three-dimensional image holograms,” Appl. Opt.31(2), 223–229 (1992). [CrossRef] [PubMed]
  30. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A21(1), 53–58 (2004). [CrossRef] [PubMed]
  31. S. A. Collins., “Lens-System Diffraction Integral Written in Terms of Matrix Optics,” J. Opt. Soc. Am.60(9), 1168–1177 (1970). [CrossRef]
  32. O. Vallée and M. Soares, Airy Functions and Applications to Physics, (Imperial College, 2004).
  33. B. T. Draine, “The Discrete-Dipole Approximation and Its Application to Interstellar Graphite Grains,” Astrophys. J.333, 848–872 (1988). [CrossRef]
  34. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited