OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24452–24459

A Nipkow disk integrated with Fresnel lenses for terahertz single pixel imaging

Chong Li, James Grant, Jue Wang, and David R. S. Cumming  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24452-24459 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3940 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel Nipkow disk design for terahertz (THz) single pixel imaging applications. A 100 mm high resistivity (ρ≈3k-10k Ω·cm) silicon wafer was used for the disk on which a spiral array of twelve 16-level binary Fresnel lenses were fabricated using photolithography and a dry-etch process. The implementation of Fresnel lenses on the Nipkow disk increases the THz signal transmission compared to the conventional pinhole-based Nipkow disk by more than 12 times thus a THz source with lower power or a THz detector with lower detectivity can be used. Due to the focusing capability of the lenses, a pixel resolution better than 0.5 mm is in principle achievable. To demonstrate the concept, a single pixel imaging system operating at 2.52 THz is described.

© 2013 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(110.0110) Imaging systems : Imaging systems
(050.1965) Diffraction and gratings : Diffractive lenses
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Imaging Systems

Original Manuscript: July 9, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 24, 2013
Published: October 7, 2013

Chong Li, James Grant, Jue Wang, and David R. S. Cumming, "A Nipkow disk integrated with Fresnel lenses for terahertz single pixel imaging," Opt. Express 21, 24452-24459 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 24116 (2005). [CrossRef]
  2. J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008). [CrossRef]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech.52(10), 2438–2447 (2004). [CrossRef]
  4. A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt.43(30), 5637–5646 (2004). [CrossRef] [PubMed]
  5. T. Yasuda, Y. Kawada, H. Toyoda, and H. Takahashi, “Terahertz movie of internal transmission imaging,” Opt. Express15(23), 15583–15588 (2007). [CrossRef] [PubMed]
  6. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  7. A. Nahata, J. T. Yardley, and T. F. Heinz, “Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection,” Appl. Phys. Lett.81(6), 938–963 (2002). [CrossRef]
  8. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terzhertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008). [CrossRef]
  9. A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett.30(19), 2563–2565 (2005). [CrossRef] [PubMed]
  10. J. Yang, S. Ruan, and M. Zhang, “Real-time, continuous-wave terahertz imaging by a pyroelectric camera,” Chin. Opt. Lett.6(1), 29–31 (2008). [CrossRef]
  11. A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett.89(14), 141125 (2006). [CrossRef]
  12. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express19(8), 7827–7832 (2011). [CrossRef] [PubMed]
  13. J. Baird, “Apparatus for transmitting views or images to a distance” patent, US1699270, January 1929.
  14. M. D. Egger and M. Petrăn, “New reflected-light microscope for viewing unstained brain and ganglion cells,” Science157(3786), 305–307 (1967). [CrossRef] [PubMed]
  15. G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett.53(8), 716–718 (1988). [CrossRef]
  16. J. W. Lichtman, W. J. Sunderland, and R. S. Wilkinson, “High-resolution imaging of synaptic structure with a simple confocal microscope,” New Biol.1(1), 75–82 (1989). [PubMed]
  17. T. Tanaami and K. Mikuriya, “Nipkow disk for confocal optical scanner” European Patent Office, EP0539691 A2, 5 May 1993.
  18. R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol.95, 57–75 (2005). [CrossRef] [PubMed]
  19. Y. Takahara, N. Matsuki, and Y. Ikegaya, “Nipkow confocal imaging from deep brain tissues,” J. Integr. Neurosci.10(01), 121–129 (2011). [CrossRef] [PubMed]
  20. Y. Ma, J. Grant, S. Saha, and D. R. S. Cumming, “Terahertz single pixel imaging based on a Nipkow disk,” Opt. Lett.37(9), 1484–1486 (2012). [CrossRef] [PubMed]
  21. E. Hecht, Optics 4th Edition, (Addison Wesley, 2001).
  22. M. B. Stern, “Binary optics: A VLSI-based microptics technology,” Microelectron. Eng.32(1-4), 369–388 (1996). [CrossRef]
  23. E. D. Walsby, S. Wang, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, X.-C. Zhang, and D. R. S. Cumming, “Multilevel silicon diffractive optics for terahertz waves,” J. Vac. Sci. Technol.20(6), 2780–2783 (2002). [CrossRef]
  24. S. C. Saha, C. Li, Y. Ma, J. P. Grant, and D. R. S. Cumming, “Fabrication of multilevel silicon diffractive lens at terahertz frequency,” IEEE Trans. Terahertz Sci. Tech.3(4), 479–485 (2013). [CrossRef]
  25. M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Sci. Technol.49(5), 915–923 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited