OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24460–24467

Multi-level surface enhanced Raman scattering using AgOx thin film

Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, Kuang Sheng Chung, Min-Kai Hsiao, Hsin Wei Huang, Ding-Wei Huang, Hai-Pang Chiang, Pui Tak Leung, and Din Ping Tsai  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24460-24467 (2013)
http://dx.doi.org/10.1364/OE.21.024460


View Full Text Article

Enhanced HTML    Acrobat PDF (2821 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ag nanostructures with surface-enhanced Raman scattering (SERS) activities have been fabricated by applying laser-direct writing (LDW) technique on silver oxide (AgOx) thin films. By controlling the laser powers, multi-level Raman imaging of organic molecules adsorbed on the nanostructures has been observed. This phenomenon is further investigated by atomic-force microscopy and electromagnetic calculation. The SERS-active nanostructure is also fabricated on transparent and flexible substrate to demonstrate our promising strategy for the development of novel and low-cost sensing chip.

© 2013 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(310.3840) Thin films : Materials and process characterization
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Thin Films

History
Original Manuscript: July 24, 2013
Revised Manuscript: September 16, 2013
Manuscript Accepted: September 24, 2013
Published: October 7, 2013

Citation
Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, Kuang Sheng Chung, Min-Kai Hsiao, Hsin Wei Huang, Ding-Wei Huang, Hai-Pang Chiang, Pui Tak Leung, and Din Ping Tsai, "Multi-level surface enhanced Raman scattering using AgOx thin film," Opt. Express 21, 24460-24467 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994). [CrossRef] [PubMed]
  2. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985). [CrossRef]
  4. A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc.130(16), 5523–5529 (2008). [CrossRef] [PubMed]
  5. X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008). [CrossRef] [PubMed]
  6. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4(23), 7419–7424 (2012). [CrossRef] [PubMed]
  7. W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays,” Plasmonics4(2), 187–192 (2009). [CrossRef]
  8. K. K. Strelau, T. Schüler, R. Möller, W. Fritzsche, and J. Popp, “Novel bottom-up SERS substrates for quantitative and parallelized analytics,” ChemPhysChem11(2), 394–398 (2010). [CrossRef] [PubMed]
  9. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B105(24), 5599–5611 (2001). [CrossRef]
  10. H.-L. Huang, C. F. Chou, S. H. Shiao, Y.-C. Liu, J.-J. Huang, S. U. Jen, and H.-P. Chiang, “Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays,” Opt. Express21(S5), A901–A908 (2013). [CrossRef]
  11. J. Neddersen, G. Chumanov, and T. M. Cotton, “Laser-ablation of metals - a new method for preparing SERS active colloids,” Appl. Spectrosc.47(12), 1959–1964 (1993). [CrossRef]
  12. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett.10(2), 553–561 (2010). [CrossRef] [PubMed]
  13. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: From microfabrication to nanoprocessing,” Laser Photonics Rev.4(1), 123–143 (2010). [CrossRef]
  14. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19(6), 5602–5610 (2011). [CrossRef] [PubMed]
  15. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, “Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates,” Opt. Express19(8), 6990–6998 (2011). [CrossRef] [PubMed]
  16. K. Masui, S. Shoji, K. Asaba, T. C. Rodgers, F. Jin, X. M. Duan, and S. Kawata, “Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization,” Opt. Express19(23), 22786–22796 (2011). [CrossRef] [PubMed]
  17. C.-H. Lin, L. Jiang, Y.-H. Chai, H. Xiao, S.-J. Chen, and H.-L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced raman scattering,” Opt. Express17(24), 21581–21589 (2009). [CrossRef] [PubMed]
  18. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B103(8), 1226–1232 (1999). [CrossRef]
  19. M. L. Tseng, Y.-W. Huang, M.-K. Hsiao, H. W. Huang, H. M. Chen, Y. L. Chen, C. H. Chu, N.-N. Chu, Y. J. He, C. M. Chang, W. C. Lin, D.-W. Huang, H.-P. Chiang, R.-S. Liu, G. Sun, and D. P. Tsai, “Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement,” ACS Nano6(6), 5190–5197 (2012). [CrossRef] [PubMed]
  20. W. Zhu, D. Wang, and K. B. Crozier, “Direct observation of beamed Raman scattering,” Nano Lett.12(12), 6235–6243 (2012). [CrossRef] [PubMed]
  21. A. J. Pasquale, B. M. Reinhard, and L. Dal Negro, “Concentric necklace nanolenses for optical near-field focusing and enhancement,” ACS Nano6(5), 4341–4348 (2012). [CrossRef] [PubMed]
  22. S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012). [CrossRef] [PubMed]
  23. D. He, B. Hu, Q.-F. Yao, K. Wang, and S.-H. Yu, “Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles,” ACS Nano3(12), 3993–4002 (2009). [CrossRef] [PubMed]
  24. W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A.109(24), 9281–9286 (2012). [CrossRef] [PubMed]
  25. A. J. Chung, Y. S. Huh, and D. Erickson, “Large area flexible SERS active substrates using engineered nanostructures,” Nanoscale3(7), 2903–2908 (2011). [CrossRef] [PubMed]
  26. X. Liu, C. Zong, K. Ai, W. He, and L. Lu, “Engineering natural materials as surface-enhanced raman spectroscopy substrates for in situ molecular sensing,” ACS Appl. Mater. Interfaces4(12), 6599–6608 (2012). [CrossRef] [PubMed]
  27. Y. Nagai, T. Yamaguchi, and K. Kajikawa, “Angular-resolved polarized surface enhanced raman spectroscopy,” J. Phys. Chem. C116(17), 9716–9723 (2012). [CrossRef]
  28. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express16(17), 12469–12477 (2008). [CrossRef] [PubMed]
  29. W.-C. Lin, S.-H. Huang, C.-L. Chen, C.-C. Chen, D. P. Tsai, and H.-P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process.101(1), 185–189 (2010). [CrossRef]
  30. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver,” J. Phys. Chem.88(24), 5935–5944 (1984). [CrossRef]
  31. S. Inasawa, M. Sugiyama, and S. Koda, “Size controlled formation of gold nanoparticles using photochemical grwoth and photothermal size reduction by 308 nm laser pulses,” Jpn. J. Appl. Phys.42(10), 6705–6712 (2003). [CrossRef]
  32. T.-C. Peng, W.-C. Lin, C.-W. Chen, D. P. Tsai, and H.-P. Chiang, “Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles,” Plasmonics6(1), 29–34 (2011). [CrossRef]
  33. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  34. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  35. D. V. Tsu and T. Ohta, “Mechanism of properties of noble ZnS-SiO2 protection layer for phase change optical disk media,” Jpn. J. Appl. Phys.45(8A), 6294–6307 (2006). [CrossRef]
  36. C. H. Chu, C. D. Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express18(17), 18383–18393 (2010). [CrossRef] [PubMed]
  37. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express14(10), 4452–4458 (2006). [CrossRef] [PubMed]
  38. C. M. Chang, C. H. Chu, M. L. Tseng, H. P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express19(10), 9492–9504 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited