OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24468–24474

Design of thin infrared quarter-wave and half-wave plates using antenna-array sheets

Yuchu He and George V. Eleftheriades  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24468-24474 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A thin quarter-wave plate and a half-wave plate are designed based on multiple antenna-array sheets (AAS). For transmission through cascaded antenna-array sheets, an equivalent transmission-line model is used. The interspacing dielectric is modeled as a transmission line with each AAS treated as a loaded shunt admittance. By utilizing this transmission-line model to treat the plates as a differential phase shifter between two orthogonal polarizations, a quarter-wave plate can be designed with two AAS and a half-wave plate can be designed with three AAS. Both wave plates can achieve high transmission with the desired 90° and 180° phase difference between two orthogonal polarizations.

© 2013 Optical Society of America

OCIS Codes
(260.3090) Physical optics : Infrared, far
(260.3910) Physical optics : Metal optics
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

Original Manuscript: July 22, 2013
Revised Manuscript: September 23, 2013
Manuscript Accepted: September 25, 2013
Published: October 7, 2013

Yuchu He and George V. Eleftheriades, "Design of thin infrared quarter-wave and half-wave plates using antenna-array sheets," Opt. Express 21, 24468-24474 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys.32, 1455–1461 (1999). [CrossRef]
  2. J. Scott Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45, 5453–5469 (2006). [CrossRef] [PubMed]
  3. C. A. Farlow, D. B. Chenault, J. L. Pezzaniti, K. D. Spradley, and M. G. Gulley, “Imaging polarimeter development and applications,” in Polarization Analysis and Measurement IV, Proc. SPIE4481, 118 (2002). [CrossRef]
  4. J. D. Beasley and P. D. Marlowe, “Achromatic wave plates for the mid-infrared,” in Polarization: Measurement, Analysis, and Remote Sensing X, Proc. SPIE8364,83640I (2012). [CrossRef]
  5. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett.83, 513–515 (2013). [CrossRef]
  6. S. L. Wadsworth and G. D. Boreman, “Broadband infrared meanderline reflective quarter-wave plate,” Opt. Express19, 10604–10612 (2011). [CrossRef] [PubMed]
  7. Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express17, 2871–2879 (2009). [CrossRef] [PubMed]
  8. A. Kravchenko, A. Shevchenko, V. Ovchinnikov, P. Grahn, and M. Kaivola, “Fabrication and characterization of a large-area metal nano-grid wave plate,” Appl. Phys. Lett.103, 033111 (2013). [CrossRef]
  9. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an Infrared meanderline phase retarder,” IEEE Trans. Antennas Propag.55, 2983–2988 (2007). [CrossRef]
  10. R. V. Garver, “Broad-band diode phase shifters,” IEEE Trans. Microwave Theory Tech.20, 314–323 (1972). [CrossRef]
  11. R. M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics2003). [CrossRef]
  12. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011). [CrossRef]
  13. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102, 256801 (2009). [CrossRef] [PubMed]
  14. B. Yang, W. Ye, X. Yuan, Z. Zhu, and C. Zeng, “Design of ultrathin plasmonic quarter-wave plate based on period coupling,” Opt. Lett.38, 679–681 (2013). [CrossRef] [PubMed]
  15. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37, 1820–1822 (2012). [CrossRef] [PubMed]
  16. A. Pors, M. G. Nielsen, G. D. Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011). [CrossRef] [PubMed]
  17. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008) [CrossRef] [PubMed]
  18. B. A. Munk, Frequency Selective Surfaces (Wiley2000). [CrossRef]
  19. J. W. Nilsson, Electric Circuits (Prentice Hall2010).
  20. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett.110, 203903 (2013). [CrossRef]
  21. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley2005).
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  23. H. H. Li, “Refractive index of ZnSe, ZnS and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13, 103 (1984). [CrossRef]
  24. P. J. Wright and B. Cockayne, “The organometallic chemical vapour deposition of ZnS and ZnSe at atmospheric pressure,” J.Cryst. Growth59, 148–154 (1982). [CrossRef]
  25. M. Rahe, E. Oertel, L. Reinhardt, D. Ristau, and H. Welling, “Absorption calorimetry and laser-induced damage threshold measurements of antireflective-coated ZnSe and metal mirrors at 10.6μm,” in Laser-Induced Damage in Optical Materials, Proc. SPIE1441, 113 (1991). [CrossRef]
  26. J. Y. Lau and S. V. Hum, “Analysis and characterization of a multipole reconfigurable transmitarray element,” IEEE Trans. Antennas Propag.59, 70–79 (2011). [CrossRef]
  27. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited