OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24490–24496

Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures

Tianrui Zhai, Yuanhai Lin, Hongmei Liu, Shengfei Feng, and Xinping Zhang  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24490-24496 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One- and two-dimensional plasmonic nanostructures can be fabricated using nanoscale tensile stress. A polymer layer, coated with a thin metal film, is exposed to an interference pattern produced by ultraviolet laser beams. Crosslinking is induced between the polymeric molecules located within the bright fringes. This process not only increases the refractive index but also reduces the polymer layer thickness. Corrugations occur on the continuous thin metal film due to the nanoscale stress in the polymer layer. Thus, a periodic nanostructure of area 3 × 3 mm and depth 50 nm is created both in the polymer and metal films with excellent homogeneity and reproducibility. This method enables direct writing of a large-area plasmonic nanostructure at low cost which can be used in the design of optoelectronic devices and sensors.

© 2013 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: July 18, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: September 26, 2013
Published: October 7, 2013

Tianrui Zhai, Yuanhai Lin, Hongmei Liu, Shengfei Feng, and Xinping Zhang, "Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures," Opt. Express 21, 24490-24496 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  2. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  3. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol.2(9), 549–554 (2007). [CrossRef] [PubMed]
  4. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater.19(22), 3771–3782 (2007). [CrossRef]
  5. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007). [CrossRef] [PubMed]
  6. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005). [CrossRef] [PubMed]
  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  8. Y. Lin, T. Zhai, Q. Ma, H. Liu, and X. P. Zhang, “Compact bandwidth-tunable polarization filter based on a plasmonic heterograting,” Opt. Express21(9), 11315–11321 (2013). [CrossRef] [PubMed]
  9. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano Lett.11(10), 4295–4298 (2011). [CrossRef] [PubMed]
  10. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006). [CrossRef] [PubMed]
  11. X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology20(42), 425303 (2009). [CrossRef] [PubMed]
  12. M. Lu, B. Krishna Juluri, Y. Zhao, Y. Jun Liu, T. J. Bunning, and T. Jun Huang, “Single-step holographic fabrication of large-area periodically corrugated metal films,” J. Appl. Phys.112(11), 113101 (2012). [CrossRef] [PubMed]
  13. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5(6), 1065–1070 (2005). [CrossRef] [PubMed]
  14. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater.13(19), 1501–1505 (2001). [CrossRef]
  15. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett.35(4), 502–504 (2010). [CrossRef] [PubMed]
  16. V. Malyarchuk, F. Hua, N. H. Mack, V. T. Velasquez, J. O. White, R. G. Nuzzo, and J. A. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express13(15), 5669–5675 (2005). [CrossRef] [PubMed]
  17. J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater.22(10), 1102–1110 (2010). [CrossRef] [PubMed]
  18. X. Zhang, H. Liu, H. Li, and T. Zhai, “Direct nanopatterning into conjugated polymers using Iinterference crosslinking,” Macromol. Chem. Phys.213(12), 1285–1290 (2012). [CrossRef]
  19. U. Jeong, D. Ryu, J. Kim, D. Kim, T. P. Russell, and C. J. Hawker, “Volume contractions induced by crosslinking: a novel route to nanoporous polymer films,” Adv. Mater.15(15), 1247–1250 (2003). [CrossRef]
  20. W. Zhao, T. Cao, and J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking,” Adv. Funct. Mater.14(8), 783–790 (2004). [CrossRef]
  21. T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater.23(16), 1860–1864 (2011). [CrossRef] [PubMed]
  22. H. M. Lee, M. Ge, B. Sahu, P. Tarakeshwar, and K. S. Kim, “Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation,” J. Phys. Chem. B107(37), 9994–10005 (2003). [CrossRef]
  23. C. A. Chang, Y. K. Kim, and A. Schrott, “Adhesion studies of metals on fluorocarbon polymer films,” J. Vac. Sci. Technol. A8(4), 3304–3309 (1990). [CrossRef]
  24. B. Wenger, N. Tétreault, M. Welland, and R. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett.97(19), 193303 (2010). [CrossRef]
  25. T. Zhai and X. Zhang, “Gain-and feedback-channel matching in lasers based on radiative-waveguide gratings,” Appl. Phys. Lett.101(14), 143507 (2012). [CrossRef]
  26. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  27. S. Linden, J. Kuhl, and H. Giessen, “Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction,” Phys. Rev. Lett.86(20), 4688–4691 (2001). [CrossRef] [PubMed]
  28. S. Feng, X. Zhang, J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics6(1), 063513 (2012). [CrossRef]
  29. X. Zhang, X. Ma, F. Dou, P. Zhao, and H. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater.21(22), 4219–4227 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited