OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24504–24513

Metallic nanoparticle chains on dielectric waveguides: coupled and uncoupled situations compared

Mickaël Février, Philippe Gogol, Jean-Michel Lourtioz, and Béatrice Dagens  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24504-24513 (2013)
http://dx.doi.org/10.1364/OE.21.024504


View Full Text Article

Enhanced HTML    Acrobat PDF (1015 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the optical behaviors of metallic nanoparticle (MNP) chains supporting localized surface plasmon (LSP) for different distances between particles. MNPs are excited through the fundamental TE mode of a silicon waveguide. Finite difference time domain (FDTD) calculations and optical power transmission measurements reveal three different behaviors. For short distances between particles, dipolar coupling occurs, and the MNP chain behaves as a waveguide. For the longest distances, nanoparticles are uncoupled, and the MNP chain acts as a LSP Bragg grating. Finally, for intermediate distances, we observe one behavior at a time, i.e. dipolar coupling or LSP Bragg reflection. There is only a small range of wavelengths within which both behaviors can coexist.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Integrated Optics

History
Original Manuscript: July 22, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 25, 2013
Published: October 7, 2013

Citation
Mickaël Février, Philippe Gogol, Jean-Michel Lourtioz, and Béatrice Dagens, "Metallic nanoparticle chains on dielectric waveguides: coupled and uncoupled situations compared," Opt. Express 21, 24504-24513 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24504


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater.16(19), 1685–1706 (2004). [CrossRef]
  2. H. A. Atwater, “The promise of plasmonics,” Sci. Am.296(4), 56–62 (2007). [CrossRef] [PubMed]
  3. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles,” Phys. Rev. Lett.82(12), 2590–2593 (1999). [CrossRef]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003). [CrossRef] [PubMed]
  6. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B70(12), 125429 (2004). [CrossRef]
  7. A. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B74(3), 033402 (2006). [CrossRef]
  8. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express15(26), 17482–17493 (2007). [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001). [CrossRef] [PubMed]
  10. H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides,” Phys. Rev. Lett.94(12), 123901 (2005). [CrossRef] [PubMed]
  11. M. Sandtke and L. Kuipers, “Spatial distribution and near-field coupling of surface plasmon polariton Bloch modes,” Phys. Rev. B77(23), 235439 (2008). [CrossRef]
  12. J.-C. Weeber, A. Bouhelier, G. C. Francs, L. Markey, and A. Dereux, “Submicrometer In-Plane Integrated Surface Plasmon Cavities,” Nano Lett.7(5), 1352–1359 (2007). [CrossRef] [PubMed]
  13. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, S. Massenot, J. Grandidier, L. Markey, and A. Dereux, “Surface-plasmon hopping along coupled coplanar cavities,” Phys. Rev. B76(11), 113405 (2007). [CrossRef]
  14. M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling: a material independent way to complex coupled DFB lasers,” Opt. Mater.17(1–2), 19–25 (2001). [CrossRef]
  15. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant Coupling Effect between Metal Nanoparticle Chain and Optical Waveguide,” Nano Lett.12(2), 1032–1037 (2012). [CrossRef] [PubMed]
  16. A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide,” Nano Lett.13(3), 1000–1006 (2013). [CrossRef] [PubMed]
  17. R. Quidant, C. Girard, J.-C. Weeber, and A. Dereux, “Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains,” Phys. Rev. B69(8), 085407–085414 (2004). [CrossRef]
  18. M. Fevrier, P. Gogol, A. Aassime, R. Megy, D. Bouville, J.-M. Lourtioz, and B. Dagens, “Localized surface plasmon Bragg grating on SOI waveguide at telecom wavelengths,” Appl. Phys. A.109(4), 935–942 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited