OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24514–24531

Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic

Subramanian Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M.S. Shahriar  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24514-24531 (2013)
http://dx.doi.org/10.1364/OE.21.024514


View Full Text Article

Enhanced HTML    Acrobat PDF (2914 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S1/2,F = 1->5P1/2,F = 1,2->6S1/2,F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell.

© 2013 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.4180) Atomic and molecular physics : Multiphoton processes

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: July 24, 2013
Revised Manuscript: September 11, 2013
Manuscript Accepted: September 14, 2013
Published: October 7, 2013

Citation
Subramanian Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, and M.S. Shahriar, "Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic," Opt. Express 21, 24514-24531 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998). [CrossRef]
  2. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004). [CrossRef]
  3. A. M. C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005). [CrossRef] [PubMed]
  4. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009). [CrossRef] [PubMed]
  5. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010). [CrossRef] [PubMed]
  6. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011). [CrossRef] [PubMed]
  7. S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012). [CrossRef] [PubMed]
  8. S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng1, and M. S. Shahriar, “Optically controlled waveplate at a telecom wavelength for all-optical switching,” Preprint, http://lapt.ece.northwestern.edu/preprints/waveplate.pdf
  9. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008). [CrossRef] [PubMed]
  10. G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  11. S. M. Hendrickson, M. M. Lai, T. B. Pittman, J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010). [CrossRef] [PubMed]
  12. T. Nee, S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995). [CrossRef]
  13. S. Y. Lu, R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996). [CrossRef]
  14. X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011). [CrossRef]
  15. X. Liu, A. Heifetz, S. C. Tseng, M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009). [CrossRef] [PubMed]
  16. B. Misra, E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977). [CrossRef]
  17. W. M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41(5), 2295–2300 (1990). [CrossRef] [PubMed]
  18. Y. Huang, J. B. Altepeter, P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010). [CrossRef]
  19. S. Weilandy, L. Alexander, L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).
  20. M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995). [CrossRef] [PubMed]
  21. P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12(6), 491–499 (1982). [CrossRef]
  22. M. J. Duggin, “Imaging polarimetry in scene element discrimination,” Proc. SPIE 3754, 108–117 (1999). [CrossRef]
  23. B. J. DeBoo, J. M. Sasian, R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt. 44(26), 5434–5445 (2005). [CrossRef] [PubMed]
  24. J. F. de Boer, T. E. Milner, J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24(5), 300–302 (1999). [CrossRef] [PubMed]
  25. D. A. Steck, “Alkali D line data,” http://steck.us/alkalidata/rubidium87numbers.pdf
  26. M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” Prepint, http://arxiv.org/abs/1309.1130
  27. D. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (John Wiley & Sons, 2008), Chap. 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited