OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24736–24741

Fabry-Perot enhanced Faraday rotation in graphene

Nicolas Ubrig, Iris Crassee, Julien Levallois, Ievgeniia O. Nedoliuk, Felix Fromm, Michl Kaiser, Thomas Seyller, and Alexey B. Kuzmenko  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 24736-24741 (2013)
http://dx.doi.org/10.1364/OE.21.024736


View Full Text Article

Enhanced HTML    Acrobat PDF (837 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.

© 2013 OSA

OCIS Codes
(230.2240) Optical devices : Faraday effect
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:
Spectroscopy

History
Original Manuscript: April 19, 2013
Revised Manuscript: September 18, 2013
Manuscript Accepted: September 29, 2013
Published: October 9, 2013

Citation
Nicolas Ubrig, Iris Crassee, Julien Levallois, Ievgeniia O. Nedoliuk, Felix Fromm, Michl Kaiser, Thomas Seyller, and Alexey B. Kuzmenko, "Fabry-Perot enhanced Faraday rotation in graphene," Opt. Express 21, 24736-24741 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-24736


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett.9, 2610–2613 (2009). [CrossRef] [PubMed]
  2. J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol.7, 472–478 (2012). [CrossRef] [PubMed]
  3. N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, “Hot Carrier–Assisted intrinsic photoresponse in graphene,” Science334, 648–652 (2011). [CrossRef] [PubMed]
  4. F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009). [CrossRef] [PubMed]
  5. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. v. d. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nature Physics7, 48–51 (2011). [CrossRef]
  6. A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B84, 235410 (2011). [CrossRef]
  7. I. Fialkovsky and D. V. Vassilevich, “Faraday rotation in graphene,” The European Physical Journal B85, 1–10 (2012). [CrossRef]
  8. H. Da and G. Liang, “Enhanced faraday rotation in magnetophotonic crystal infiltrated with graphene,” Appl. Phys. Lett.98, 261915–261915–3 (2011). [CrossRef]
  9. A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant faraday rotation in graphene metasurfaces,” Appl. Phys. Lett.101, 231605–231605–4 (2012). [CrossRef]
  10. R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum faraday and kerr rotations in graphene,” Nat. Comm.4, 1841 (2013). [CrossRef]
  11. H. Da and C.-W. Qiu, “Graphene-based photonic crystal to steer giant faraday rotation,” Appl. Phys. Lett.100, 241106–241106–4 (2012). [CrossRef]
  12. Y. Zhou, X. L. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. (2013). [CrossRef]
  13. I. Crassee, J. Levallois, D. van der Marel, A. L. Walter, T. Seyller, and A. B. Kuzmenko, “Multicomponent magneto-optical conductivity of multilayer graphene on SiC,” Phys. Rev. B84, 035103 (2011). [CrossRef]
  14. J. Levallois, M. Tran, and A. B. Kuzmenko, “Decrypting the cyclotron effect in graphite using kerr rotation spectroscopy,” Solid State Commun.152, 1294–1300 (2012). [CrossRef]
  15. R. Rosenberg, C. B. Rubinstein, and D. R. Herriott, “Resonant optical faraday rotator,” Applied Optics3, 1079–1083 (1964). [CrossRef]
  16. J. Stone, R. Jopson, L. Stulz, and S. Licht, “Enhancement of faraday rotation in a fibre fabry-perot cavity,” Electronics Letters26, 849–851 (1990). [CrossRef]
  17. R. Wagreich and C. Davis, “Magnetic field detection enhancement in an external cavity fiber fabry-perot sensor,” Journal of Lightwave Technology14, 2246–2249 (1996). [CrossRef]
  18. D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, and R. Le Naour, “Small faraday rotation measurement with a Fabry–Pérot cavity,” Appl. Phys. Lett.66, 3546–3548 (1995). [CrossRef]
  19. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004). [CrossRef]
  20. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science312, 1191–1196 (2006). [CrossRef] [PubMed]
  21. M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers,” Phys. Rev. Lett.97, 266405 (2006). [CrossRef]
  22. I. Crassee and , To be published.
  23. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New Journal of Physics11, 095013 (2009). [CrossRef]
  24. O. S. Heavens, Thin film physics (Methuen, 1970).
  25. T. Ando, Y. Zheng, and H. Suzuura, “Dynamical conductivity and zero-mode anomaly in honeycomb lattices,” J. Phys. Soc. Jpn.71, 1318–1324 (2002). [CrossRef]
  26. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320, 1308–1308 (2008). [CrossRef] [PubMed]
  27. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett.100, 117401 (2008). [CrossRef] [PubMed]
  28. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nat. Mater.8, 203–207 (2009). [CrossRef] [PubMed]
  29. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation,” Phys. Rev. Lett.103, 246804 (2009). [CrossRef]
  30. T. Morimoto, Y. Hatsugai, and H. Aoki, “Cyclotron radiation and emission in graphene — a possibility of landau-level laser,” Journal of Physics: Conference Series150, 022059 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited