OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24742–24752

Doping concentration induced phase transition in Eu3+-doped β-PbF2 nano-particles

Hui Guo, Hua Yu, Xinxing Zhang, Lifen Chang, Zijian Lan, Yiming Li, and Lijuan Zhao  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24742-24752 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1596 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Europium doped β-PbF2 nano-particles with different doping concentration are prepared to investigate the site structure of Eu3+ dopants. It is concluded that the site symmetry of Eu3+ dopants in β-PbF2 nano-particles lowers from Oh to D4h with the increase of doping concentration. By X-ray diffraction analysis and photoluminescence spectroscopy study, a doping concentration induced phase transition from lowly doped cubic Pb3EuF9 to highly doped tetragonal PbEuF5 is detected. The intermediate phase of moderately doped nano-particles, which contains both phases mentioned above, is observed for the first time. Moreover, the temperature-dependent intermediate phase analysis suggests that the tetragonal phase is more stable than the cubic phase, which is also confirmed by the first-principle calculations. Our results suggest that the doping concentration induced phase transition in β-PbF2 nano-particles can be used for understanding other Lanthanide-doped nano-particle systems.

© 2013 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:

Original Manuscript: June 27, 2013
Revised Manuscript: September 24, 2013
Manuscript Accepted: September 30, 2013
Published: October 9, 2013

Hui Guo, Hua Yu, Xinxing Zhang, Lifen Chang, Zijian Lan, Yiming Li, and Lijuan Zhao, "Doping concentration induced phase transition in Eu3+-doped β-PbF2 nano-particles," Opt. Express 21, 24742-24752 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small6(24), 2781–2795 (2010). [CrossRef] [PubMed]
  2. J. Chen, C. R. Guo, M. Wang, L. Huang, L. P. Wang, C. C. Mi, J. Li, X. X. Fang, C. B. Mao, and S. K. Xu, “Controllable synthesis of NaYF(4) : Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans,” J. Mater. Chem.21(8), 2632–2638 (2011). [CrossRef] [PubMed]
  3. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004). [CrossRef] [PubMed]
  4. H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You, and C. H. Yan, “High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties,” J. Am. Chem. Soc.128(19), 6426–6436 (2006). [CrossRef] [PubMed]
  5. B. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Flask, and P. N. Prasad, “Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals,” Adv. Funct. Mater.19(6), 853–859 (2009). [CrossRef]
  6. C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Versatile phosphate phosphors ABPO(4) in white light-emitting diodes: collocated characteristic analysis and theoretical calculations,” J. Am. Chem. Soc.132(9), 3020–3028 (2010). [CrossRef] [PubMed]
  7. F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature463(7284), 1061–1065 (2010). [CrossRef] [PubMed]
  8. J. W. Wang, J. H. Hao, and P. A. Tanner, “Upconversion luminescence of an insulator involving a band to band multiphoton excitation process,” Opt. Express19(12), 11753–11758 (2011). [CrossRef] [PubMed]
  9. M. Haase and H. Schäfer, “Nanopartikel für die Aufwärtskonversion,” Angew. Chem.123(26), 5928–5950 (2011). [CrossRef]
  10. O. Lehmann, K. Kömpe, and M. Haase, “Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles,” J. Am. Chem. Soc.126(45), 14935–14942 (2004). [CrossRef] [PubMed]
  11. S. W. Hao, L. Sun, G. Y. Chen, H. L. Qiu, C. Xu, T. N. Soitah, Y. Sun, and C. H. Yang, “Synthesis of monoclinic Na3ScF6:1 mol% Er3+/2 mol% Yb3+ microcrystals by a facile hydrothermal approach,” J. Alloy. Comp.522, 74–77 (2012). [CrossRef]
  12. M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent Lanthanide complexes,” Phys. Chem. Chem. Phys.4(9), 1542–1548 (2002). [CrossRef]
  13. J. C. Boyer, F. Vetrone, J. A. Capobianco, A. Speghini, and M. Bettinelli, “Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3,” J. Phys. Chem. B108(52), 20137–20143 (2004). [CrossRef]
  14. A. M. Cross, P. S. May, F. C. J. M. van Veggel, and M. T. Berry, “Dipicolinate sensitization of europium luminescence in dispersible 5%Eu:LaF3 nanoparticles,” J. Phys. Chem. C114(35), 14740–14747 (2010). [CrossRef]
  15. Y. H. Wang, Y. S. Liu, Q. B. Xiao, H. M. Zhu, R. F. Li, and X. Y. Chen, “Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties,” Nanoscale3(8), 3164–3169 (2011). [CrossRef] [PubMed]
  16. A. Kar and A. Patra, “Impacts of core-shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer,” Nanoscale4(12), 3608–3619 (2012). [CrossRef] [PubMed]
  17. Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Appl. Phys. Lett.63(24), 3268–3270 (1993). [CrossRef]
  18. P. A. Tick, N. F. Borrellia, L. K. Cornelius, and M. A. Newhouse, “Transparent glass ceramics for 1300 nm amplifier applications,” J. Appl. Phys.78(11), 6367–6374 (1995). [CrossRef]
  19. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodríguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett.88(7), 073111 (2006). [CrossRef]
  20. V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb(3+)-Er(3+)-Tm(3+) co-doped nano-glassceramics,” Opt. Express15(15), 9535–9540 (2007). [CrossRef] [PubMed]
  21. M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323&324, 245–249 (2001).
  22. M. Beggiora, I. M. Reaney, and M. S. Islam, “Structure of the nanocrystals in oxyfluoride glass ceramics,” Appl. Phys. Lett.83(3), 467–469 (2003). [CrossRef]
  23. R. J. Hamers, J. R. Wietfeld, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys.77(2), 683–692 (1982). [CrossRef]
  24. S. Mho and J. C. Wright, “Site selective spectroscopy of defect chemistry in CdF2:Eu,” J. Chem. Phys.77(3), 1183–1192 (1982). [CrossRef]
  25. F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B Condens. Matter33(2), 1372–1380 (1986). [CrossRef] [PubMed]
  26. M. Bouffard, J. P. Jouart, and M. F. Joubert, “Red-to-blue up-conversion spectroscopy of Tm3+ in SrF2, CaF2, BaF2 and CdF2,” Opt. Mater.14(1), 73–79 (2000). [CrossRef]
  27. J. Méndez-Ramos, V. Lavín, I. R. Martín, U. R. Rodríguez-Mendoza, V. D. Rodríguez, A. D. Lozano-Gorrín, and P. Núñez, “Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics,” J. Appl. Phys.94(4), 2295–2301 (2003). [CrossRef]
  28. K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys.102(2), 024312 (2007). [CrossRef]
  29. N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, “The tetragonal structure of nanocrystals in rare-earth doped oxyfluoride glass ceramics,” Phys. Chem. Chem. Phys.13(4), 1499–1505 (2011). [CrossRef] [PubMed]
  30. H. Yu, H. Guo, M. Zhang, Y. Liu, M. Liu, and L. J. Zhao, “Distribution of Nd3+ ions in oxyfluoride glass ceramics,” Nanoscale Res. Lett.7(1), 275 (2012). [CrossRef] [PubMed]
  31. H. Yu, N. Hu, Y. N. Wang, Z. L. Wang, Z. S. Gan, and L. J. Zhao, “The fabrication of nano-particles in aqueous solution from oxyfluoride glass ceramics by thermal induction and corrosion treatment,” Nanoscale Res. Lett.3(12), 516–520 (2008). [CrossRef] [PubMed]
  32. J. Rodriguez-Carvajal, “FULLPROF program for Rietveld, Profile Matching and Integrated Intensities Refinement of X-ray and/or Neutron Data, Satellite Meeting on Powder Diffraction of the XVth Congress of IUCr,” Toulouse, France, p. 127 (1990).
  33. T. Roisnel, and J. Rodriguez-Carvajal, “WinPLOTR: A Windows tool for powder diffraction patterns analysis,” in Epdic 7: European Powder Diffraction Pts 1 and 2, 378, 118 (2001).
  34. C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Thermal and optical investigation of EuF3-doped lead fluorogermanate glasses,” J. Non-Cryst. Solids356(1), 56–64 (2010). [CrossRef]
  35. M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” J. Non-Cryst. Solids 256&257, 361–365 (1999).
  36. C. Liu and J. Heo, “Electron energy loss spectroscopy analysis on the preferential incorporation of Er3+ ions into fluoride nanocrystals in oxyfluoride glass-ceramics,” J. Am. Ceram. Soc.95(7), 2100–2102 (2012). [CrossRef]
  37. C. Liu, X. J. Zhao, and J. Heo, “Direct imaging of inhomogeneous distribution of Er3 + ions in lead fluoride nanocrystals,” J. Non-Cryst. Solids365, 1–5 (2013). [CrossRef]
  38. K. Leśniak, “Model simulation of the tetragonal symmetry centre of a rare-earth ion in a fluorite lattice,” J. Phys. C Solid State Phys.19(15), 2721–2727 (1986). [CrossRef]
  39. K. Leśniak, “Crystal fields and dopant-ligand separations in cubic centres of rare-earth ions in fluorites,” J. Phys. Condens. Matter2(25), 5563–5574 (1990). [CrossRef]
  40. J. M. Baker, W. Hayes, and D. A. Jones, “Paramagnetic resonance of impurities in CaF2,” Proc. Phys. Soc.73(6), 942–945 (1959). [CrossRef]
  41. C. W. Rector, B. C. Pandey, and H. W. Moos, “Electron paramagnetic resonance and optical Zeeman spectra of type II CaF2:Er3+,” J. Chem. Phys.45(1), 171–179 (1966). [CrossRef]
  42. M. J. Weber and R. W. Bierig, “Paramagnetic resonance and relaxation of trivalent rare-earth ions in calcium fluoride. I. resonance spectra and crystal fields,” Phys. Rev.134(6A), A1492–A1503 (1964). [CrossRef]
  43. Q. Ju, Y. S. Liu, R. F. Li, L. Q. Liu, W. Q. Luo, and X. Y. Chen, “Optical spectroscopy of Eu3+-doped BaFCl nanocrystals,” J. Phys. Chem. C113(6), 2309–2315 (2009). [CrossRef]
  44. G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Effect of CeF3 addition on the nucleation and up-conversion luminescence in transparent oxyfluoride glass-ceramics,” Chem. Mater.17(8), 2216–2222 (2005). [CrossRef]
  45. B. Delley, “An all-electron numerical method for solving the local density functional for polyatomic molecules,” J. Chem. Phys.92(1), 508–517 (1990). [CrossRef]
  46. B. Delley, “From molecules to solids with the DMol3 approach,” J. Chem. Phys.113(18), 7756–7764 (2000). [CrossRef]
  47. J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B Condens. Matter45(23), 13244–13249 (1992). [CrossRef] [PubMed]
  48. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics,” Appl. Phys. Lett.81(11), 1937–1939 (2002). [CrossRef]
  49. Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Preparation and luminescence properties of Ce3+ and Tb3+ co-doped glasses and glass ceramics containing SrF2 nanocrystals,” J. Non-Cryst. Solids356(50–51), 2875–2879 (2010). [CrossRef]
  50. J. J. Pan, R. R. Xu, M. Wang, G. J. Gao, J. M. Chen, L. L. Hu, and J. J. Zhang, “Enhanced 2.0 μm emission in Tm3+/Ho3+ codoped transparent oxyfluoride glass ceramics containing β-PbF2 nano-crystals,” Solid State Commun.150(1–2), 78–80 (2010). [CrossRef]
  51. D. T. Tu, Y. S. Liu, H. M. Zhu, R. F. Li, L. Q. Liu, and X. Y. Chen, “Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals,” Angew. Chem. Int. Ed. Engl.52(4), 1128–1133 (2013). [CrossRef] [PubMed]
  52. C. Bensalem, M. Mortier, D. Vivien, and M. Diaf, “Optical investigation of Eu3+:PbF2 ceramics and transparent glass-ceramics,” Opt. Mater.33(6), 791–798 (2011). [CrossRef]
  53. M. Gu, Q. C. Gao, S. M. Huang, X. L. Liu, B. Liu, and C. Ni, “Luminescence properties of Pr3+-doped transparent oxyfluoride glass-ceramics containing BaYF5 nanocrystals,” J. Lumin.132(10), 2531–2536 (2012). [CrossRef]
  54. B. C. Jamalaiah, M. V. Vijaya Kumar, and K. Rama Gopal, “Fluorescence properties and energy transfer mechanism of Sm3+ ion in lead telluroborate glasses,” Opt. Mater.33(11), 1643–1647 (2011). [CrossRef]
  55. P. Babu, K. H. Jang, E. S. Kim, L. Shi, R. Vijaya, V. Lavín, C. K. Jayasankar, and H. J. Seo, “Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass-ceramics,” J. Non-Cryst. Solids356(4–5), 236–243 (2010). [CrossRef]
  56. Z. J. Hu, E. Ma, Y. S. Wang, and D. Q. Chen, “Fluorescence property investigations on Er3+-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Mater. Chem. Phys.100(2–3), 308–312 (2006). [CrossRef]
  57. W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 μm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express17(23), 20952–20958 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited