OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24793–24798

Stepwise synthesis of cubic Au-AgCdS core-shell nanostructures with tunable plasmon resonances and fluorescence

Xiao-Li Liu, Shan Liang, Fan Nan, Yue-Yue Pan, Jun-Jun Shi, Li Zhou, Shuang-Feng Jia, Jian-Bo Wang, Xue-Feng Yu, and Qu-Quan Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24793-24798 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2081 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cubic Au-AgCdS core-shell nanostructures were synthesized through cation exchange method assisted by tributylphosphine (TBP) as a phase-transfer agent. Among intermediate products, Au-Ag core-shell nanocubes exhibited many high-order plasmon resonance modes related to the special cubic shape, and these plasmon bands red-shifted along with the increasing of particle size. The plasmon band of Au core first red-shifted and broadened at the step of Au-Ag2S and then blue-shifted and narrowed at the step of Au-AgCdS. Since TBP was very crucial for the efficient conversion from Ag2S to CdS, we found that both absorption and fluorescence of the final products could be controlled by TBP.

© 2013 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.6000) Materials : Semiconductor materials
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence

ToC Category:

Original Manuscript: July 22, 2013
Revised Manuscript: September 29, 2013
Manuscript Accepted: September 30, 2013
Published: October 9, 2013

Xiao-Li Liu, Shan Liang, Fan Nan, Yue-Yue Pan, Jun-Jun Shi, Li Zhou, Shuang-Feng Jia, Jian-Bo Wang, Xue-Feng Yu, and Qu-Quan Wang, "Stepwise synthesis of cubic Au-AgCdS core-shell nanostructures with tunable plasmon resonances and fluorescence," Opt. Express 21, 24793-24798 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tailoring light-matter-spin interactions in colloidal hetero-nanostructures,” Nature466(7302), 91–95 (2010). [CrossRef] [PubMed]
  2. Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.102(16), 163001 (2009). [CrossRef] [PubMed]
  3. B. Peng, Q. Zhang, X. Liu, Y. Ji, H. V. Demir, C. H. A. Huan, T. C. Sum, and Q. Xiong, “Fluorophore-doped core-multishell spherical plasmonic nanocavities: resonant energy transfer toward a loss compensation,” ACS Nano6(7), 6250–6259 (2012). [CrossRef] [PubMed]
  4. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  6. H. Y. Lin, Y. F. Chen, J. G. Wu, D. I. Wang, and C. C. Chen, “Carrier transfer induced photoluminescence change in metal-semiconductor core-shell nanostructures,” Appl. Phys. Lett.88(16), 161911 (2006). [CrossRef]
  7. H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, “Illuminating dark plasmons of silver nanoantenna rings to enhance exciton–plasmon interactions,” Adv. Funct. Mater.19(2), 298–303 (2009). [CrossRef]
  8. N. Zhang, S. Liu, and Y. J. Xu, “Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst,” Nanoscale4(7), 2227–2238 (2012). [CrossRef] [PubMed]
  9. D. Seo, G. Park, and H. Song, “Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe,” J. Am. Chem. Soc.134(2), 1221–1227 (2012). [CrossRef] [PubMed]
  10. Z. Sun, Z. Yang, J. Zhou, M. H. Yeung, W. Ni, H. Wu, and J. Wang, “A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures,” Angew. Chem. Int. Ed. Engl.48(16), 2881–2885 (2009). [CrossRef] [PubMed]
  11. W. T. Chen, T. T. Yang, and Y. J. Hsu, “Au−CdS core−shell nanocrystals with controllable shell thickness and photoinduced charge separation property,” Chem. Mater.20(23), 7204–7206 (2008). [CrossRef]
  12. J. S. Lee, E. V. Shevchenko, and D. V. Talapin, “Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer,” J. Am. Chem. Soc.130(30), 9673–9675 (2008). [CrossRef] [PubMed]
  13. M. Li, X. F. Yu, S. Liang, X. N. Peng, Z. J. Yang, Y. L. Wang, and Q. Q. Wang, “Synthesis of Au–CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions,” Adv. Funct. Mater.21(10), 1788–1794 (2011). [CrossRef]
  14. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches,” Science327(5973), 1634–1638 (2010). [CrossRef] [PubMed]
  15. S. Liang, X. L. Liu, Y. Z. Yang, Y. L. Wang, J. H. Wang, Z. J. Yang, L. B. Wang, S. F. Jia, X. F. Yu, L. Zhou, J. B. Wang, J. Zeng, Q. Q. Wang, and Z. Zhang, “Symmetric and asymmetric Au-AgCdSe hybrid nanorods,” Nano Lett.12(10), 5281–5286 (2012). [CrossRef] [PubMed]
  16. L. Zhou, X. F. Fu, L. Yu, X. Zhang, X. F. Yu, and Z. H. Hao, “Crystal structure and optical properties of silver nanorings,” Appl. Phys. Lett.94(15), 153102 (2009). [CrossRef]
  17. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  18. A. S. Kumbhar, M. K. Kinnan, and G. Chumanov, “Multipole plasmon resonances of submicron silver particles,” J. Am. Chem. Soc.127(36), 12444–12445 (2005). [CrossRef] [PubMed]
  19. X. Wu, T. Ming, X. Wang, P. Wang, J. Wang, and J. Chen, “High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy,” ACS Nano4(1), 113–120 (2010). [CrossRef] [PubMed]
  20. M. Haggui, M. Dridi, J. Plain, S. Marguet, H. Perez, G. C. Schatz, G. P. Wiederrecht, S. K. Gray, and R. Bachelot, “Spatial confinement of electromagnetic hot and cold spots in gold nanocubes,” ACS Nano6(2), 1299–1307 (2012). [CrossRef] [PubMed]
  21. Y. H. Lee, H. Chen, Q. H. Xu, and J. Wang, “Refractive index sensitivities of noble metal nanocrystals: the effects of multipolar plasmon resonances and the metal type,” J. Phys. Chem. C115(16), 7997–8004 (2011). [CrossRef]
  22. X. L. Liu, S. Liang, F. Nan, Z. J. Yang, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS,” Nanoscale5(12), 5368–5374 (2013). [CrossRef] [PubMed]
  23. Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano4(11), 6725–6734 (2010). [CrossRef] [PubMed]
  24. G. Park, C. Lee, D. Seo, and H. Song, “Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides,” Langmuir28(24), 9003–9009 (2012). [CrossRef] [PubMed]
  25. J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin, and Y. Xia, “Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape,” Nano Lett.11(7), 3010–3015 (2011). [CrossRef] [PubMed]
  26. D. H. Son, S. M. Hughes, Y. Yin, and A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science306(5698), 1009–1012 (2004). [CrossRef] [PubMed]
  27. S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B103(18), 3529–3533 (1999). [CrossRef]
  28. M. Liu and P. Guyot-Sionnest, “Synthesis and optical characterization of Au/Ag core/shell nanorods,” J. Phys. Chem. B108(19), 5882–5888 (2004). [CrossRef]
  29. F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C112(51), 20233–20240 (2008). [CrossRef]
  30. X. Xia, J. Zeng, L. K. Oetjen, Q. Li, and Y. Xia, “Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals,” J. Am. Chem. Soc.134(3), 1793–1801 (2012). [CrossRef] [PubMed]
  31. Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L. P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc.132(32), 11372–11378 (2010). [CrossRef] [PubMed]
  32. J. M. Bennett, J. L. Stanford, and E. J. Ashley, “Optical constants of silver sulfide tarnish films,” J. Opt. Soc. Am.60(2), 224–232 (1970). [CrossRef]
  33. S. J. Czyzak, W. M. Baker, R. C. Crane, and J. B. Howe, “Refractive indexes of single synthetic zinc sulfide and cadmium sulfide crystals,” J. Opt. Soc. Am.47(3), 240–243 (1957). [CrossRef]
  34. T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos, and S. R. Leone, “Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative,” ACS Nano6(6), 5702–5709 (2012). [CrossRef] [PubMed]
  35. D. E. Palik, “Introductory remarks,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press; San Diego, Calif, 1998).
  36. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002). [CrossRef] [PubMed]
  37. J. M. Huang and C. J. Murphy, “Luminescence of CdS nanoparticles doped and activated with foreign ions,” Proc. MRS560, 33–38 (1999). [CrossRef]
  38. N. P. Smirnova, A. I. Kryukov, A. M. Eremenko, Yu. A. Galagan, and S. Ya. Kuchmii, “Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices,” Theor. Exp. Chem.34(5), 272–276 (1998). [CrossRef]
  39. R. Sethi, L. Kumar, P. K. Sharma, and A. C. Pandey, “Tunable visible emission of Ag-doped CdZnS alloy quantum dots,” Nanoscale Res. Lett.5(1), 96–102 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited