OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24837–24846

Precise shaping of laser light by an acousto-optic deflector

Dimitris Trypogeorgos, Tiffany Harte, Alexis Bonnin, and Christopher Foot  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24837-24846 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (796 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a laser beam shaping method using acousto-optic deflection of light and discuss its application to dipole trapping of ultracold atoms. By driving the acousto-optic deflector with multiple frequencies, we generate an array of overlapping diffraction-limited beams that combine to form an arbitrary-shaped smooth and continuous trapping potential. Confinement of atoms in a flat-bottomed potential formed by a laser beam with uniform intensity over its central region confers numerous advantages over the harmonic confinement intrinsic to Gaussian beam dipole traps and many other trapping schemes. We demonstrate the versatility of this beam shaping method by generating potentials with large flat-topped regions as well as intensity patterns that compensate for residual external potentials to create a uniform background to which the trapping potential of experimental interest can be added.

© 2013 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping
(230.1040) Optical devices : Acousto-optical devices
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Atomic and Molecular Physics

Original Manuscript: July 24, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 17, 2013
Published: October 10, 2013

Dimitris Trypogeorgos, Tiffany Harte, Alexis Bonnin, and Christopher Foot, "Precise shaping of laser light by an acousto-optic deflector," Opt. Express 21, 24837-24846 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen, “Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond,” Adv. Phys.56, 243 (2007). [CrossRef]
  2. M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-optical formation of an atomic Bose-Einstein condensate,” Phys. Rev. Lett.87, 010404 (2001). [CrossRef] [PubMed]
  3. G. D. Bruce, S. L. Bromley, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “Holographic power-law traps for the efficient production of Bose-Einstein condensates,” Phys. Rev. A84, 053410 (2011). [CrossRef]
  4. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett.81, 3108 (1998). [CrossRef]
  5. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature453, 891–894 (2008). [CrossRef] [PubMed]
  6. M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature415, 39–44 (2002). [CrossRef] [PubMed]
  7. R. N. Palmer and D. Jaksch, “High-field fractional quantum Hall effect in optical lattices,” Phys. Rev. Lett.96, 180407 (2006). [CrossRef] [PubMed]
  8. C. Weitenberg, S. Kuhr, K. Mølmer, and J. F. Sherson, “Quantum computation architecture using optical tweezers,” Phys. Rev. A84, 032322 (2011). [CrossRef]
  9. V. L. Campo, K. Capelle, J. Quintanilla, and C. Hooley, “Quantitative determination of the Hubbard model phase diagram from optical lattice experiments by two-parameter scaling,” Phys. Rev. Lett.99, 240403 (2007). [CrossRef]
  10. H. Xiong and B. Wu, “Atomic quantum corrals for Bose-Einstein condensates,” Phys. Rev. A82, 053634 (2010). [CrossRef]
  11. S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express15, 8619–8625 (2007). [CrossRef] [PubMed]
  12. L. Amico, A. Osterloh, and F. Cataliotti, “Quantum many particle systems in ring-shaped optical lattices,” Phys. Rev. Lett.95, 063201 (2005). [CrossRef] [PubMed]
  13. K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys.11, 043030 (2009). [CrossRef]
  14. N. Houston, E. Riis, and A. S. Arnold, “Reproducible dynamic dark ring lattices for ultracold atoms,” J. Phys. B41, 211001 (2008). [CrossRef]
  15. R. A. Williams, J. D. Pillet, S. Al-Assam, B. Fletcher, M. Shotter, and C. J. Foot, “Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms,” Opt. Express16, 16977–16983 (2008). [CrossRef] [PubMed]
  16. S. Al-Assam, R. A. Williams, and C. J. Foot, “Ultracold atoms in an optical lattice with dynamically variable periodicity,” Phys. Rev. A82, 021604 (2010). [CrossRef]
  17. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express16, 2176–2190 (2008). [CrossRef] [PubMed]
  18. C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J.44, 76–86 (1916). [CrossRef]
  19. A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A14, 547–557 (1997). [CrossRef]
  20. R. Dorn, S. Quabis, and G. Leuchs, “The focus of light - linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt.50, 1917–1926 (2003).
  21. P. Senthilkumaran, F. Wyrowski, and H. Schimmel, “Vortex stagnation problem in iterative Fourier transform algorithms,” Opt. Laser. Eng.43, 43–56 (2005). [CrossRef]
  22. J. Liang, J. Kohn, M. F. Becker, and D. J. Heinzen, “High-precision laser beam shaping using a binary-amplitude spatial light modulator,” Appl. Optics49, 1323–1330 (2010). [CrossRef]
  23. A. L. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep.2, 721 (2012). [CrossRef] [PubMed]
  24. T. P. Meyrath, F. Schreck, J. L. Hanssen, C. Chuu, and M. G. Raizen, “Bose-Einstein condensate in a box,” Phys. Rev. A71, 041604 (2005). [CrossRef]
  25. S. Hunn, K. Zimmermann, M. Hiller, and A. Buchleitner, “Tunneling decay of two interacting bosons in an asymmetric double-well potential: A spectral approach,” Phys. Rev. A87, 043626 (2013). [CrossRef]
  26. G. D. Bruce, J. Mayoh, G. Smirne, L. Torralbo-Campo, and D. Cassettari, “A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms,” Phys. ScriptaT143, 014008 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited