OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24856–24872

Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips

J. S. Gómez-Díaz, M. Esquius-Morote, and J. Perruisseau-Carrier  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24856-24872 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3580 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An approach to couple free-space waves and non-resonant plasmons propagating along graphene strips is proposed based on the periodic modulation of the graphene strip width. The solution is technologically very simple, scalable in frequency, and provides customized coupling angle and intensity. Moreover, the coupling properties can be dynamically controlled at a fixed frequency via the graphene electrical field effect, enabling advanced and flexible plasmon excitation-detection strategies. We combine a previously derived scaling law for graphene strips with leaky-wave theory borrowed from microwaves to achieve rigorous and efficient modeling and design of the structure. In particular we analytically derive its dispersion, predict its coupling efficiency and radiated field structure, and design strip configurations able to fulfill specific coupling requirements. The proposed approach and developed methods are essential to the recent and fundamental problem of the excitation-detection of non-resonant plasmons propagating along a continuous graphene strip, and could pave the way to smart all-graphene sensors and transceivers.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.5610) Other areas of optics : Radiation
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: July 31, 2013
Revised Manuscript: September 27, 2013
Manuscript Accepted: September 27, 2013
Published: October 10, 2013

J. S. Gómez-Díaz, M. Esquius-Morote, and J. Perruisseau-Carrier, "Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips," Opt. Express 21, 24856-24872 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys.70, 1–87 (2007). [CrossRef]
  2. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012). [CrossRef]
  3. F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: A plaftform for strong light-matter interactions,” Nano Lett.11, 3370–3377 (2011). [CrossRef] [PubMed]
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbo filts,” Science306, 666–669 (2004). [CrossRef] [PubMed]
  5. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011). [CrossRef] [PubMed]
  6. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nature photon.6, 749–758 (2012). [CrossRef]
  7. J. Perruisseau-Carrier, “Graphene for antenna applications: Opportunities and challenges from microwaves to THz,” in Antennas and Propagation Conference (LAPC)Loughborough, UK (2012).
  8. E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection,” Appl. Phys. Lett.102, 104103 (2013). [CrossRef]
  9. J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express21, 15490 (2013). [CrossRef] [PubMed]
  10. L. Ju, B. Geng, J. Horn, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630 (2011). [CrossRef] [PubMed]
  11. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol.7, 330 (2012). [CrossRef] [PubMed]
  12. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. M., and , “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano7, 2388–2395 (2013). [CrossRef] [PubMed]
  13. M. Tamagnone, J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, “Reconfigurable THz plasmonic antenna concept using a graphene stack,” Appl. Phys. Lett.101, 214102 (2012). [CrossRef]
  14. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009). [CrossRef]
  15. J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically-biased graphene sheets,” J. Appl. Phys.112, 124906 (2012). [CrossRef]
  16. A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (2011). [CrossRef]
  17. Y. V. Bludov, A. Ferreira, N. M. Peres, and M. I. Vasilevskiy, “A primer on surface plasmon-polaritons in graphene,” Int. J. Mod. Phys. B27, 1341001 (2013). [CrossRef]
  18. A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys.216, 396 (1968).
  19. K. D. Joannopoulos, K. A. Nelson, and S. Fan, “Phonon-polariton excitations in photonic crystals,” Phys. Rev. B68, 075209 (2003). [CrossRef]
  20. A. R. Davoyan, V. V. Popov, and S. A. Nikitov, “Tailoring terahertz near-field enhancement via two-dimensional plasmons,” Phys. Rev. Lett.108, 127401 (2012). [CrossRef] [PubMed]
  21. A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Trans. Antennas Propag.AP-7, 201–208 (1959). [CrossRef]
  22. A. M. Patel and A. Grbic, “A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface,” IEEE Trans. Antennas Propag.59, 2087–2096 (2011). [CrossRef]
  23. G. Minatti, F. Caminita, M. Casaletti, and S. Maci, “Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance,” IEEE Trans. Antennas Propag.59, 4436–4444 (2011). [CrossRef]
  24. M. Esquius-Morote, J. S. Gomez-Diaz, and J. Perruisseau-Carrier, “Periodically-modulated graphene leaky-wave antenna for electronic beamscanning at THz,” arXiv:1305.4774 [cond-mat.mes-hall] (2013).
  25. N. M. Peres, Y. V. Bludox, A. Ferreira, and M. I. Vasilevskiy, “Exact solution for square-wave grating covered with graphene: Surface plasmon-polaritons in the THz range,” J. Phys.: Condens. Matter25, 125303 (2013). [CrossRef]
  26. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012). [CrossRef] [PubMed]
  27. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012). [PubMed]
  28. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza-Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012). [PubMed]
  29. Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science332, 1294–1297 (2011). [CrossRef] [PubMed]
  30. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “Thz imaging and sensing for security applications- explosives, weapons and drugs,” Semicond. Sci. Technol.20, 266–280 (2005). [CrossRef]
  31. A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, 4th ed., J. L. Volakis, Ed., New York (McGraw-Hill, 2007).
  32. D. Jackson, P. Burghihgnoli, G. Lovat, F. Capolino, J. Chen, R. Wilton, and A. Oliner, “The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves,” Proc. IEEE99, 1780–1805 (2011). [CrossRef]
  33. P. Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antennas Propag.61, 1528–1537 (2013). [CrossRef]
  34. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50, 910–928 (2002). [CrossRef]
  35. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity of graphene,” J. Appl. Phys.103, 064302 (2008). [CrossRef]
  36. D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, “Graphene based plasmonic tunable low pass filters in the THz band,” arXiv:1304.6320 [cond-mat.mes-hall] (2013).
  37. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express14, 13030–13042 (2006). [CrossRef] [PubMed]
  38. B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antennas Propag.58, 3212–3221 (2010). [CrossRef]
  39. J. L. Gómez-Tornero, G. Goussetis, and A. Álvarez-Melcón, “Correction of dielectric losses in practical leaky-wave antenna designs,” J Eelectromagnet Wave21, 1025–1036 (2007).
  40. Ansoft Corporation, “High Frequency Structure Simulator (HFSS),” v.14. (2012).
  41. G. P. Williams, “Filling the THz gap-high power sources and applications,” Rep. Prog. Phys.69, 301–326 (2005). [CrossRef]
  42. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE95, 1658–1665 (2007). [CrossRef]
  43. R. J. Pryputniewicz, “MEMS summitv technology,” Worcester Polytechnic Institute, Worcester MA (2002).
  44. M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett.98, 206805 (2007). [CrossRef] [PubMed]
  45. R. Beams, L. G. Cancado, and L. Novotny, “Low temperature rama study of the electron coherence length near graphene edges,” Nano Lett.11, 1177–1181 (2011). [CrossRef] [PubMed]
  46. G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene,” Phys. Rev. B87, 115429 (2013). [CrossRef]
  47. M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, “Plasmons and the spectral function of graphene,” Phys. Rev. B77, 081411 (2008). [CrossRef]
  48. R. F. Oulton, V. J. Sorger, T. Zentgraf, M. R. Ma, C. Gladden, L. Dai, G. Bartal, R. B. X. Zhang, L. G. Cancado, and L. Novotny, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009). [CrossRef] [PubMed]
  49. I. N. Kholmanov, C. W. Magnuson, A. E. Aliev, H. Li, B. Zhang, J. W. Suk, L. L. Zhang, E. Peng, S. H. Mousavi, A. B. Khanikaev, and R. Piner, “Improved electrical conductivity of graphene films integrated with metal nanowires,” Nano Lett.12, 5679–5683 (2012). [CrossRef] [PubMed]
  50. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett.92, 151911 (2008). [CrossRef]
  51. V. P. Gusynin, S. G. Sharapov, and J. B. Carbotte, “On the universal ac optical background in graphene,” New J. Phys.11, 095013 (2009). [CrossRef]
  52. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” EPJ B56, 281–284 (2007). [CrossRef]
  53. S. Duttaa and S. K. Pati, “Novel properties of graphene nanoribbons: a review,” J. Mater. Chem.20, 82078223 (2010). [CrossRef]
  54. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrate for high-quality graphene electronics,” Nat. Nanotechnol.82, 722–726 (2010). [CrossRef]
  55. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kima, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146, 351–355 (2008). [CrossRef]
  56. A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science328, 999–1002 (2010). [CrossRef] [PubMed]
  57. A. H. C. Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81, 109–162 (2009). [CrossRef]
  58. G. W. Hanson, “Dyadic green’s functions for an anisotropic non-local model of biased graphene,” IEEE Trans. Antennas Propag.56, 747–757 (2008). [CrossRef]
  59. Z. Chen and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in IEEE International Electron Devices Meeting, San Francisco, USA (2008).
  60. S. Maci, G. Minatti, M. Casaletti, and M. Bosiljevac, “Metasurfing: Addressing waves on impenetrable metasurfaces,” IEEE Antenn. Wireless Propag. Lett.10, 1499–1502 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited