OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24894–24903

Low drive voltage optical phase modulator with novel InGaAlAs/InAlAs multiple-quantum-barrier based n-i-n heterostructure

Xiangnan Zhao, Bing Xiong, Changzheng Sun, and Yi Luo  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24894-24903 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1235 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical phase modulator based on novel n-i-n InGaAlAs/InAlAs multiple-quantum-barrier (MQBs) is proposed to reduce the waveguide loss and enhance the modulation efficiency. Efficient bias loading with low leakage current is realized by taking advantages of the large conduction band discontinuity in InGaAlAs/InAlAs heterostructure and high electron reflection by MQBs. Low optical transmission loss of 2.3 dB/cm and improved modulation performance with a voltage length product of 1.06 V⋅cm are demonstrated for TE mode at 1550 nm. The linear and quadratic electro-optic coefficients of the fabricated device are estimated to be 1.0 pm/V and 1.4 × 10−19 m2/V2, respectively.

© 2013 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(230.4205) Optical devices : Multiple quantum well (MQW) modulators
(250.4110) Optoelectronics : Modulators

ToC Category:
Optical Devices

Original Manuscript: August 22, 2013
Revised Manuscript: October 3, 2013
Manuscript Accepted: October 3, 2013
Published: October 10, 2013

Xiangnan Zhao, Bing Xiong, Changzheng Sun, and Yi Luo, "Low drive voltage optical phase modulator with novel InGaAlAs/InAlAs multiple-quantum-barrier based n-i-n heterostructure," Opt. Express 21, 24894-24903 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol.24(12), 4711–4728 (2006). [CrossRef]
  2. M. Jarrahi, T. H. Lee, and D. A. B. Miller, “Wideband, low driving voltage traveling-wave Mach–Zehnder modulator for RF photonics,” IEEE Photon. Technol. Lett.20(7), 517–519 (2008). [CrossRef]
  3. L. Zhang, J. Sinsky, D. Van Thourhout, N. Sauer, L. Stulz, A. Adamiecki, and S. Chandrasekhar, “Low voltage high speed travelling wave InGaAsP/InP phase modulator,” IEEE Photon. Technol. Lett.16(8), 1831–1833 (2004). [CrossRef]
  4. P. W. Juodawlkis, F. J. O’Donnell, R. J. Bailey, J. J. Plant, K. G. Ray, D. C. Oakley, A. Napoleone, and G. E. Betts, “Sub-volt-Vπ InGaAsP electrorefractive modulators using symmetric, uncoupled quantum wells,” in Proceedings of 16th Annual Meeting of IEEE (Lasers and Electro-Optics Society, Tucson, 2003), pp. 788–789.
  5. K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, R. Iga, Y. Kondo, and Y. Tohmori, “40 Gbit/s n-i-n InP Mach-Zehnder modulator with a π voltage of 2.2 V,” Electron. Lett.39(20), 1464–1465 (2003). [CrossRef]
  6. T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, M. Ishikawa, Y. Kawaguchi, M. Arai, and H. Yasaka, “10-Gb/s 100-km SMF transmission using InP Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” IEEE Photon. Technol. Lett.20(13), 1178–1180 (2008). [CrossRef]
  7. N. Kikuchi, Y. Shibata, K. Tsuzuki, H. Sanjoh, T. Sato, E. Yamada, T. Ishibashi, and H. Yasaka, “80-Gb/s low-driving-voltage InP DQPSK modulator with an n-p-i-n structure,” IEEE Photon. Technol. Lett.21(12), 787–789 (2009). [CrossRef]
  8. I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, “Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition,” J. Appl. Phys.59(11), 3792–3797 (1986). [CrossRef]
  9. T. Takagi, F. Koyama, and K. Iga, “Electron-wave reflection by multi-quantum barrier in n-GaAs/i-AlGaAs/n-GaAs tunneling diode,” Appl. Phys. Lett.59(22), 2877–2879 (1991). [CrossRef]
  10. N. Dagli, High-speed photonics device (Taylor & Francis, 2007), Chap. 4.
  11. K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiqutum barrier (MQB),” Electron. Lett.22(19), 1008–1009 (1986). [CrossRef]
  12. E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AIGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987). [CrossRef]
  13. P. W. A. McIlroy, P. M. Rodgers, J. S. Singh, P. C. Spurdens, and I. D. Henning, “Low-loss single-mode InP/InGaAsP waveguides grown by MOVPE,” Electron. Lett.23(13), 701–703 (1987). [CrossRef]
  14. R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron.27(3), 626–640 (1991). [CrossRef]
  15. T. H. Stievater, D. Park, W. S. Rabinovich, M. W. Pruessner, S. Kanakaraju, C. J. Richardson, and J. B. Khurgin, “Enhanced electro-optic phase shifts in suspended waveguides,” Opt. Express18(2), 885–892 (2010). [CrossRef] [PubMed]
  16. J. Mendoza-Alvarez, L. Coldren, A. Alping, R. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave Technol.6(6), 793–808 (1988). [CrossRef]
  17. C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz 3dB bandwidth,” IEEE Photon. Technol. Lett.7(4), 363–365 (1995). [CrossRef]
  18. S. S. Lee, R. V. Ramaswamy, and V. S. Sundaram, “Analysis and design of high-speed high-efficiency GaAs-AlGaAs double-heterostructure waveguide phase modulator,” IEEE J. Quantum Electron.27(3), 726–736 (1991). [CrossRef]
  19. E. L. Wooten, K. M. Kissa, A. Y. Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. M. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000). [CrossRef]
  20. S. Nishimura, H. Inoue, H. Sano, and K. Ishida, “Electrooptic effects in an InGaAs/InAlAs multiquantum well structure,” IEEE Photon. Technol. Lett.4(10), 1123–1126 (1992). [CrossRef]
  21. S. Adachi, Physical Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley-VCH, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited