OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24922–24928

High temperature stable PbS quantum dots

A. Bhardwaj, A. Hreibi, C. Liu, J. Heo, J-M Blondy, and F. Gérôme  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24922-24928 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the fabrication of nanoparticle containing optical fibers by melt and draw technique, nanoparticle stability at high temperatures is a requirement. We report the synthesis of quantum dots at temperatures as high as 1000 °C, compatible with fiber drawing, stabilized for the first time by a prior low temperature heating step. It is observed that quantum dots formed by this two step heating leads to a better emission stability at high powers associated with a reversible phenomenon, making these nanomaterials suitable for further technological applications.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: June 21, 2013
Revised Manuscript: August 24, 2013
Manuscript Accepted: August 24, 2013
Published: October 11, 2013

A. Bhardwaj, A. Hreibi, C. Liu, J. Heo, J-M Blondy, and F. Gérôme, "High temperature stable PbS quantum dots," Opt. Express 21, 24922-24928 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature447(7143), 441–446 (2007). [CrossRef] [PubMed]
  2. A. I. Ekimov and A. L. Efros, “Nonlinear optics of semiconductor-doped glasses,” Phys. Status Solidi, B Basic Res.150(2), 627–633 (1988). [CrossRef]
  3. V. Klimov, P. H. Bolivar, and H. Kurz, “Ultrafast carrier dynamics in semiconductor quantum dots,” Phys. Rev. B Condens. Matter53(3), 1463–1467 (1996). [CrossRef] [PubMed]
  4. F. Hache, M. C. Klein, D. Ricard, and C. Flytzanis, “Photoluminescence study of Schott commercial and experimental CdSSe-doped glasses: observation of surface states,” J. Opt. Soc. Am. B8(9), 1802–1806 (1991). [CrossRef]
  5. A. Bhardwaj, A. Hreibi, L. Chao, J. Heo, J. Auguste, J. Blondy, and F. Gerome, “PbS quantum dots doped glass fibers for optical applications,” in Conference on Lasers and Electro-Optics, 2012 OSA Technical Digest (Optical Society of America, 2012), paper CTh1G.1. [CrossRef]
  6. A. Bhardwaj, A. Hreibi, W. W. Yu, C. Liu, J. Heo, J.-L. Auguste, J.-M. Blondy, and F. Gerome, Proceedings of IEEE conference on Transparent Optical Networks (Coventry, United Kingdom, 2–5 July 2012), pp 1–5.
  7. C. Liu, Y. K. Kwon, and J. Heo, “Temperature-dependent brightening and darkening of photoluminescence from PbS quantum dots in glasses,” Appl. Phys. Lett.90(24), 241111 (2007). [CrossRef]
  8. L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett.90(10), 101913 (2007). [CrossRef]
  9. J. J. Peterson and T. D. Krauss, “Photobrightening and photodarkening in PbS quantum dots,” Phys. Chem. Chem. Phys.8(33), 3851–3856 (2006). [CrossRef] [PubMed]
  10. K. Wundke, J. Auxier, A. Schulzgen, N. Peyghambarian, and N. F. Borrelli, “Room temperature gain at 1.3 µm in PbS-doped glasses,” Appl. Phys. Lett.75(20), 3060–3062 (1999). [CrossRef]
  11. M. S. Gaponenko, A. A. Lutich, N. A. Tolstik, A. A. Onushchenko, A. M. Malyarevich, E. P. Petrov, and K. V. Yumashev, “Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping,” Phys. Rev. B82(12), 125320 (2010). [CrossRef]
  12. L. A. Padilha, A. A. R. Neves, C. L. Cesar, L. C. Barbosa, and C. H. B. Cruz, “Recombination processes in CdTe quantum-dot-doped glasses,” Appl. Phys. Lett.85(15), 3256–3258 (2004). [CrossRef]
  13. A. Cao and G. Veser, “Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles,” Nat. Mater.9(1), 75–81 (2010). [CrossRef] [PubMed]
  14. S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. Yang, and G. A. Somorjai, “Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions,” Nat. Mater.8(2), 126–131 (2009). [CrossRef] [PubMed]
  15. M. Kirchhoff, U. Specht, and G. Veser, “Engineering high-temperature stable nanocomposite materials,” Nanotechnology16(7), S401–S408 (2005). [CrossRef] [PubMed]
  16. D. Zschech, D. H. Kim, A. P. Milenin, S. Hopfe, R. Scholz, P. Göring, R. Hillebrand, S. Senz, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gösele, “High temperature resistant, ordered gold nanoparticle arrays,” Nanotechnology17(9), 2122–2126 (2006). [CrossRef]
  17. D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, I. A. Kudriavtsev, and T. V. Yazeva, “Auger ionization of semiconductor quantum drops in a glass matrix,” J. Lumin.47(3), 113–127 (1990). [CrossRef]
  18. X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhou, and X. Xiao, “Femtosecond investigation of charge carrier dynamics in CdSe nanocluster films,” J. Chem. Phys.106(8), 3387–3392 (1997).
  19. P. A. M. Rodrigues, P. Y. Yu, G. Tamulaitis, and S. H. Risbud, “Laser-induced heating of nanocrystals embedded in glass matrices,” J. Appl. Phys.80(10), 5963–5966 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited