OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 24952–24961

Phase locking in a Nd:YVO4 waveguide laser array using Talbot cavity

Kenichi Hirosawa, Seiichi Kittaka, Yu Oishi, Fumihiko Kannari, and Takayuki Yanagisawa  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 24952-24961 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3808 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated phase-locking in a laser-diode-array-pumped Nd:YVO4 laser array (15 emitters) using a Talbot cavity. The Nd:YVO4 slab crystal was coated by dielectric material for claddings and formed a planar waveguide for the vertical mode. To stabilize the horizontal array mode, periodical thermal lenses were generated by controlling the heat flow. The phase-locked waveguide array generated 1.65-W output power, while 2.02 W was available in a standard cavity. Two-peak supermode was demonstrated with the Talbot cavity and was converted to a single peak with a spatial light modulator. We also experimentally and numerically analyzed the characteristics of Talbot phase-locking.

© 2013 OSA

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(140.3290) Lasers and laser optics : Laser arrays
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 15, 2013
Revised Manuscript: August 26, 2013
Manuscript Accepted: August 26, 2013
Published: October 11, 2013

Kenichi Hirosawa, Seiichi Kittaka, Yu Oishi, Fumihiko Kannari, and Takayuki Yanagisawa, "Phase locking in a Nd:YVO4 waveguide laser array using Talbot cavity," Opt. Express 21, 24952-24961 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag.9, 401–407 (1836).
  2. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett.52, 1771–1773 (1988). [CrossRef]
  3. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.55, 334–336 (1989). [CrossRef]
  4. F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett.55, 816–818 (1989). [CrossRef]
  5. R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991). [CrossRef]
  6. A. M. Hornby, H. J. Baker, A. D. Colley, and D. R. Hall, “Phase locking of linear arrays of CO2waveguide lasers by the waveguide-confined Talbot effect,” Appl. Phys. Lett.63, 2591–2593 (1993). [CrossRef]
  7. H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996). [CrossRef]
  8. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, “Phase locking in a multicore fiber laser by means of a Talbot resonator,” Opt. Lett.25, 1436–1438 (2000). [CrossRef]
  9. M. Wrage, P. Glas, and M. Leitner, “Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors,” Opt. Lett.26, 980–982 (2001). [CrossRef]
  10. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,” Opt. Lett.31, 2577–2579 (2006). [CrossRef] [PubMed]
  11. L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase-locked multicore all-fiber lasers: modeling and experimental investigation,” J. Opt. Soc. Am. B24, 1721–1728 (2007). [CrossRef]
  12. R. Zhou, Q. Zhan, P. E. Powers, B. Ibarra-Escamilla, and J. W. Haus, “An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser,” J. Europ. Opt. Soc. Rap. Public.7, 12012 (2012). [CrossRef]
  13. J. Nelsson and D. N. Payne, “High-power fiber lasers,” Science332, 921–922 (2011). [CrossRef]
  14. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based display: a review,” Appl. Opt.49, F79–F98 (2010). [CrossRef] [PubMed]
  15. Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron.36, 607–614 (2000). [CrossRef]
  16. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  17. Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1. [CrossRef]
  18. T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.
  19. J. I. Mackenzie, “Dielectric solid-state planar waveguide laser: a review,” IEEE J. Sel. Top. Quantum Electron.13, 626–637 (2007). [CrossRef]
  20. K. Sueda, H. Takahashi, S. Kawato, and T. Kobayashi, “High-efficiency laser-diode-pumped microthickness Yb:Y3Al5O12slab laser,” Appl. Phys. Lett.87, 151110 (2005). [CrossRef]
  21. P. Latimer and R. F. Crouse, “Talbot effect reinterpreted,” Appl. Opt.31, 80–89 (1992). [CrossRef] [PubMed]
  22. D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006). [CrossRef]
  23. D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett.16, 823–825 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited