OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25026–25034

The contribution of nonlocal electro-opto-thermal interaction to single molecule nonlinear Raman enhancement

Chao-Yi Tai and Wen-Hsiang Yu  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25026-25034 (2013)
http://dx.doi.org/10.1364/OE.21.025026


View Full Text Article

Enhanced HTML    Acrobat PDF (1314 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

we develop a precise modelling where nonlocal electro-opto-thermal interactions are comprehensively included for the analysis of nonlinear Raman enhancement and plasmonic heating. An interaction enhancement factor GIEF is introduced to quantify the coupling between the electromagnetic field and the temperature field which is rarely considered in the estimation of Raman enhancement. For the case of isolated single nanosphere, GIEF can be up to ten, indicating a thermal origin which well explains the observed temperature rise, shortened blinking period, and the nonlinearly enhanced Raman cross-section. For the case of nanodimer, the suppression of plasmon heating was analyzed, demonstrating the great capability to mitigate biomolecular degradation and blinking.

© 2013 Optical Society of America

OCIS Codes
(190.4870) Nonlinear optics : Photothermal effects
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: July 22, 2013
Revised Manuscript: September 14, 2013
Manuscript Accepted: September 29, 2013
Published: October 14, 2013

Citation
Chao-Yi Tai and Wen-Hsiang Yu, "The contribution of nonlocal electro-opto-thermal interaction to single molecule nonlinear Raman enhancement," Opt. Express 21, 25026-25034 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25026


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974). [CrossRef]
  2. S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B22(4), 1660–1662 (1980). [CrossRef]
  3. J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys.84(8), 4174–4180 (1986). [CrossRef]
  4. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008). [CrossRef] [PubMed]
  5. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999). [CrossRef]
  6. V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem.63(3), 241–247 (1991). [CrossRef] [PubMed]
  7. J. T. Bahns, F. Yan, D. Qiu, R. Wang, and L. Chen, “Hole-enhanced Raman scattering,” Appl. Spectrosc.60(9), 989–993 (2006). [CrossRef] [PubMed]
  8. K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006). [CrossRef] [PubMed]
  9. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem.88(24), 5935–5944 (1984). [CrossRef]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  11. K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc.52(12), 1493–1497 (1998). [CrossRef]
  12. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999). [CrossRef]
  13. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996). [CrossRef]
  14. Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature373(6510), 132–134 (1995). [CrossRef]
  15. S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss.132, 249–259, discussion 309–319 (2006). [CrossRef] [PubMed]
  16. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B104(50), 11965–11971 (2000). [CrossRef]
  17. A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett.78(6), 1110–1113 (1997).
  18. K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B106(33), 8096–8099 (2002). [CrossRef]
  19. Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B109(8), 3387–3391 (2005). [CrossRef] [PubMed]
  20. Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B108(2), 673–678 (2004). [CrossRef]
  21. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010). [CrossRef] [PubMed]
  22. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009). [CrossRef] [PubMed]
  23. P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter53(19), 12659–12662 (1996). [CrossRef] [PubMed]
  24. L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy18, 26–31 (2003).
  25. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007). [CrossRef] [PubMed]
  26. R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004). [CrossRef] [PubMed]
  27. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010). [CrossRef] [PubMed]
  28. R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik165(8), 497–531 (1853). [CrossRef]
  29. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Harcourt Brace College Publishers, 1976), Chap. 1.
  30. K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand.23(4), 320–328 (1979). [CrossRef] [PubMed]
  31. M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med.29(1), 33–37 (2001). [CrossRef] [PubMed]
  32. S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules34(15), 5224–5228 (2001). [CrossRef]
  33. J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports10, 15 (2000).
  34. D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel66(2), 255–260 (1987). [CrossRef]
  35. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  36. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006). [CrossRef]
  37. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited