OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25077–25090

Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions

Elena Petrova, Sergey Ermilov, Richard Su, Vyacheslav Nadvoretskiy, André Conjusteau, and Alexander Oraevsky  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25077-25090 (2013)
http://dx.doi.org/10.1364/OE.21.025077


View Full Text Article

Enhanced HTML    Acrobat PDF (2135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Grüneisen parameter is a key temperature-dependent physical characteristic responsible for thermoelastic efficiency of materials. We propose a new methodology for accurate measurements of temperature dependence of Grüneisen parameter in optically absorbing solutions. We use two-dimensional optoacoustic (OA) imaging to improve accuracy of measurements. Our approach eliminates contribution of local optical fluence and absorbance. To validate the proposed methodology, we studied temperature dependence of aqueous cupric sulfate solutions in the range from 22 to 4°C. Our results for the most diluted salt perfectly matched known temperature dependence for the Grüneisen parameter of water. We also found that Grüneisen-temperature relationship for cupric sulfate exhibits linear trend with respect to the concentration. In addition to accurate measurements of Grüneisen changes with temperature, the developed technique provides a basis for future high precision OA temperature monitoring in live tissues.

© 2013 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 27, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 4, 2013
Published: October 14, 2013

Citation
Elena Petrova, Sergey Ermilov, Richard Su, Vyacheslav Nadvoretskiy, André Conjusteau, and Alexander Oraevsky, "Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions," Opt. Express 21, 25077-25090 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC, 2003), pp. 34/31–34/34.
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012). [CrossRef] [PubMed]
  3. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17(6), 061202 (2012). [CrossRef] [PubMed]
  4. S. Manohar, T. G. van Leeuwen, J. M. Klaase, F. M. van den Engh, and W. Steenbergen, “Photoacoustic mammography with a flat detection geometry,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 431–442.
  5. A. A. Oraevsky, “Optoacoustic tomography of the breast,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 411–429.
  6. S. Sethuraman, B. Wang, R. Smalling, and S. Emelianov, “Intravascular photoacoustic imaging of atherosclerosis,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 451–461.
  7. G. J. Diebold, “Photoacoustic monopole radiation: waves from objects with symmetry in one, two, and three dimensions,” in Photoaccoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC, 2009), pp. 3–17.
  8. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).
  9. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt.36(1), 402–415 (1997). [CrossRef] [PubMed]
  10. N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am.93(3), 1609–1612 (1993). [CrossRef]
  11. D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford Classic Texts in the Physical Sciences) (Oxford University, 2005).
  12. L. G. Hepler, “Thermal expansion and structure in water and aqueous solutions,” Can. J. Chem.47(24), 4613–4617 (1969). [CrossRef]
  13. L. Talley, G. Pickard, W. Emery, and J. Swift, “Physical properties of seawater,” in Descriptive Physical Oceanography (Elsevier Ltd., 2011), pp. 29–65.
  14. R. A. Cox, M. J. McCartney, and F. Culkin, “The specific gravity/salinity/temperature relationship in natural sea water,” Oceanogr. Abstr.17(4), 679–689 (1970). [CrossRef]
  15. Handbook of Chemistry and Physics, D. R. Lide, ed. (CRC, 1992).
  16. F. W. Kremkau, Diagnostic Ultrasound Principles and Exercises. (Harcourt Health Sciences Group, 1980).
  17. B. Wang and S. Emelianov, “Thermal intravascular photoacoustic imaging,” Biomed. Opt. Express2(11), 3072–3078 (2011). [CrossRef] [PubMed]
  18. L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, “Single-cell photoacoustic thermometry,” J. Biomed. Opt.18(2), 026003 (2013). [CrossRef] [PubMed]
  19. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005). [CrossRef]
  20. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008). [CrossRef] [PubMed]
  21. S. M. Nikitin, T. D. Khokhlova, and I. M. Pelivanov, “Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies,” J. Biomed. Opt.17(6), 061214 (2012). [CrossRef] [PubMed]
  22. B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15(6), 065002 (2010). [CrossRef] [PubMed]
  23. M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009). [CrossRef] [PubMed]
  24. A. A. Anosov and L. R. Gavrilov, “Reconstruction of the in-depth temperature distribution for biological objects by liner phased arrays,” Acoust. Phys.51(4), 376–384 (2005). [CrossRef]
  25. A. V. Liopo, A. Conjusteau, O. V. Chumakova, S. A. Ermilov, R. Su, and A. A. Oraevsky, “Highly purified biocompatible gold nanorods for contrasted optoacoustic imaging of small animal models,” Nanosci Nanotechnol Lett4(7), 681–686 (2012). [CrossRef] [PubMed]
  26. G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng.40(2), 422–437 (2012). [CrossRef] [PubMed]
  27. W. Bost, R. Lemor, and M. Fournelle, “Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents,” Appl. Opt.51(33), 8041–8046 (2012). [CrossRef] [PubMed]
  28. C. Bao, N. Beziere, P. del Pino, B. Pelaz, G. Estrada, F. Tian, V. Ntziachristos, J. M. de la Fuente, and D. Cui, “Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers,” Small9(1), 68–74 (2013). [CrossRef] [PubMed]
  29. S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Klimov, A. Kanavin, and A. A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt.48(7), C38–C45 (2009). [CrossRef] [PubMed]
  30. D.-K. Yao and L. V. Wang, “Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry,” Proc. SPIE8581, 858138 (2013). [CrossRef]
  31. N. I. Odina, A. I. Korobov, D. N. Semenov, A. N. Knysh, and T. V. Ageeva, “An automated setup for investigation of anisotropy of the gruneisen parameter of solids in the temperature range 77–350 K using the photoacoustic technique,” Instrum. Exp. Tech.51(3), 153–158 (2008). [CrossRef]
  32. A. Korobov, N. Odina, V. Chegnov, M. Chukichev, B. Enflo, C. M. Hedberg, and L. Kari, “Experimental research of Gruneisen parameter of fullerite C60 single crystal near structural phase transition at 260 K using photoacoustic technique,” in Nonlinear Acoustics—Fundamentals and Applications (ISNA 18), B. O. Enflo, C. M. Hedberg, and L. Kari, eds. (2008), p. CP1022. [CrossRef]
  33. J. Zalev, D. Herzog, B. Clingman, T. Miller, K. Kist, N. K. Dornbluth, B. M. McCorvey, P. Otto, S. Ermilov, V. Nadvoretsky, A. Conjusteau, R. Su, D. Tsyboulski, and A. Oraevsky, “Clinical feasibility study of combined optoacoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors,” Proc. SPIE8223, 82230A, 82230A-6 (2012). [CrossRef]
  34. M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010). [CrossRef] [PubMed]
  35. V. Nadvoretskiy, S. Ermilov, H. P. Brecht, R. Su, and A. Oraevsky, “Image processing and analysis in a dual-modality optoacoustic/ultrasonic system for breast cancer diagnosis,” Proc. SPIE7899, 789909, 789909-6 (2011). [CrossRef]
  36. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32(4), 399–410 (1993). [CrossRef] [PubMed]
  37. L. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt.40(19), 3196–3204 (2001). [CrossRef] [PubMed]
  38. A. Conjusteau, S. A. Ermilov, R. Su, H. P. Brecht, M. P. Fronheiser, and A. A. Oraevsky, “Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source,” Rev. Sci. Instrum.80(9), 093708 (2009). [CrossRef] [PubMed]
  39. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol.50(14), N141–N153 (2005). [CrossRef] [PubMed]
  40. J. R. Cook, R. R. Bouchard, and S. Y. Emelianov, “Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging,” Biomed. Opt. Express2(11), 3193–3206 (2011). [CrossRef] [PubMed]
  41. W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt.16(7), 075002 (2011). [CrossRef] [PubMed]
  42. J. M. Steinke and A. P. Shepherd, “Effects of temperature on optical absorbance spectra of oxy-, carboxy-, and deoxyhemoglobin,” Clin. Chem.38(7), 1360–1364 (1992). [PubMed]
  43. L. Cordone, A. Cupane, M. Leone, and E. Vitrano, “Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature rance 300-20 K,” Biophys. Chem.24(3), 259–275 (1986). [CrossRef] [PubMed]
  44. D. Theodorescu, “Cancer cryotherapy: evolution and biology,” Rev. Urol.6(Suppl 4), S9–S19 (2004). [PubMed]
  45. B. Rubinsky, “Cryosurgery,” Annu. Rev. Biomed. Eng.2(1), 157–187 (2000). [CrossRef] [PubMed]
  46. S. B. Williams, Y. Lei, P. L. Nguyen, X. Gu, S. R. Lipsitz, H.-Y. Yu, K. J. Kowalczyk, and J. C. Hu, “Comparative effectiveness of cryotherapy vs brachytherapy for localised prostate cancer,” BJU Int.110(2), E92–E98 (2012). [CrossRef] [PubMed]
  47. N. Larson, A. Gormley, N. Frazier, and H. Ghandehari, “Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia,” J. Control. Release170(1), 41–50 (2013). [CrossRef] [PubMed]
  48. G. Onik, “Image-guided prostate cryosurgery: state of the art,” Cancer Contr.8(6), 522–531 (2001). [PubMed]
  49. I. Y. Petrov, Y. Petrov, D. S. Prough, I. Cicenaite, D. J. Deyo, and R. O. Esenaliev, “Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals,” Opt. Express20(4), 4159–4167 (2012). [CrossRef] [PubMed]
  50. T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system,” Radiology256(1), 102–110 (2010). [CrossRef] [PubMed]
  51. T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt.16(8), 080502 (2011). [CrossRef] [PubMed]
  52. M. D. Gillett, M. T. Gettman, H. Zincke, and M. L. Blute, “Tissue ablation technologies for localized prostate cancer,” Mayo Clin. Proc.79(12), 1547–1555 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited