OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25271–25276

Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light

Nastaran Kazemi-Zanjani, Sylvain Vedraine, and François Lagugné-Labarthet  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25271-25276 (2013)
http://dx.doi.org/10.1364/OE.21.025271


View Full Text Article

Enhanced HTML    Acrobat PDF (1841 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Finite-Difference Time-Domain (FDTD) calculations are used to characterize the electric field in the vicinity of a sharp silver or gold cone with an apex diameter of 10 nm. The simulations are utilized to predict the intensity and the distribution of the locally enhanced electric field in tip-enhanced Raman spectroscopy (TERS). A side-by-side comparison of the enhanced electric field induced by a radially and a linearly polarized light in both gap-mode and conventional TERS setup is performed. For this purpose, a radially polarized source is introduced and integrated into the FDTD modeling. Additionally, the optical effect of a thin protective layer of alumina on the enhancement of the electric field is investigated.

© 2013 Optical Society of America

OCIS Codes
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics
(180.5655) Microscopy : Raman microscopy
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Microscopy

History
Original Manuscript: July 4, 2013
Revised Manuscript: October 3, 2013
Manuscript Accepted: October 3, 2013
Published: October 15, 2013

Citation
Nastaran Kazemi-Zanjani, Sylvain Vedraine, and François Lagugné-Labarthet, "Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light," Opt. Express 21, 25271-25276 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25271


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. A. Pozzi, M. D. Sonntag, N. Jiang, J. M. Klingsporn, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman imaging: an emergent tool for probing biology at the nanoscale,” ACS Nano7(2), 885–888 (2013). [CrossRef] [PubMed]
  2. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl.47(43), 8178–8191 (2008). [CrossRef] [PubMed]
  3. S. Kawata, “Plasmonics for nanoimaging and nanospectroscopy,” Appl. Spectrosc.67(2), 117–125 (2013). [CrossRef] [PubMed]
  4. M. Nicklaus, C. Nauenheim, A. Krayev, V. Gavrilyuk, A. Belyaev, and A. Ruediger, “Note: Tip enhanced Raman spectroscopy with objective scanner on opaque samples,” Rev. Sci. Instrum.83(6), 066102 (2012). [CrossRef] [PubMed]
  5. E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. Engl.47(9), 1658–1661 (2008). [CrossRef] [PubMed]
  6. R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp, and V. Deckert, “Characterizing cytochrome c states--TERS studies of whole mitochondria,” Chem. Commun. (Camb.)47(41), 11453–11455 (2011). [CrossRef] [PubMed]
  7. N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugné-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc.134(41), 17076–17082 (2012). [CrossRef] [PubMed]
  8. L. Novotny, “Optical antennas tuned to pitch,” Nature455(7215), 887 (2008). [CrossRef]
  9. L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” J. Raman Spectrosc.40(10), 1420–1426 (2009). [CrossRef]
  10. L. Novotny, E. J. Sánchez, and X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy71(1-4), 21–29 (1998). [CrossRef]
  11. J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, “Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy,” J. Raman Spectrosc.44(2), 227–233 (2013). [CrossRef]
  12. R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases - a tip-enhanced Raman approach,” Beilstein J Nanotechnol2, 628–637 (2011). [CrossRef] [PubMed]
  13. A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering,” J. Chem. Phys.122(18), 184716 (2005). [CrossRef] [PubMed]
  14. M. Sukharev and T. Seideman, “Optical properties of metal tips for tip-enhanced spectroscopies,” J. Phys. Chem. A113(26), 7508–7513 (2009). [CrossRef] [PubMed]
  15. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004). [CrossRef]
  16. C. Höppener, R. Beams, and L. Novotny, “Background suppression in near-field optical imaging,” Nano Lett.9(2), 903–908 (2009). [CrossRef] [PubMed]
  17. J. Steidtner and B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett.100(23), 236101 (2008). [CrossRef] [PubMed]
  18. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  19. M. Paulite, C. Blum, T. Schmid, L. Opilik, K. Eyer, G. C. Walker, and R. Zenobi, “Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments,” ACS Nano7(2), 911–920 (2013). [CrossRef] [PubMed]
  20. F. Pashaee, R. Hou, P. Gobbo, M. S. Workentin, and F. Lagugné-Labarthet, “Tip-enhanced Raman spectroscopy of self-assembled thiolated monolayers on flat gold nanoplates using Gaussian-transverse and radially Polarized excitations,” J. Phys. Chem. C117(30), 15639–15646 (2013). [CrossRef]
  21. C. A. Barrios, A. V. Malkovskiy, R. D. Hartschuh, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Extending lifetime of plasmonic silver structures designed for high-resolution chemical imaging or chemical and biological sensing,” Proc. SPIE6954, 69540C (2008). [CrossRef]
  22. X. Cui, D. Erni, W. Zhang, and R. Zenobi, “Highly efficient nano-tips with metal - dielectric coatings for tip-enhanced spectroscopy applications,” Chem. Phys. Lett.453(4-6), 262–265 (2008). [CrossRef]
  23. R. L. Agapov, A. P. Sokolov, and M. D. Foster, “Robust probes for high resolution chemical detection and imaging,” Proc. SPIE8378, 8378131–83781310 (2012). [CrossRef]
  24. A. Taflove and S. C. Hagness, in Computational Electrodynamics: the Finite - Difference Time - Domain Method (Artech House, 2000).
  25. B. C. Galarreta, I. Rupar, A. Young, and F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C115(31), 15318–15323 (2011). [CrossRef]
  26. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids II (Academic, 1998).
  27. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, 2009).
  28. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett.34(12), 1870–1872 (2009). [CrossRef] [PubMed]
  29. T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates - ideal substrates for tip-enhanced Raman scattering experiments,” Small5(4), 432–436 (2009). [CrossRef] [PubMed]
  30. C. A. Barrios, A. V. Malkovskiy, A. M. Kisliuk, A. P. Sokolov, and M. D. Foster, “Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy,” J. Phys. Chem. C113(19), 8158–8161 (2009). [CrossRef]
  31. S. Vedraine, P. Torchio, D. Duche, F. Flory, J.-J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited