OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25324–25332

Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides

Bartos Chmielak, Christopher Matheisen, Christian Ripperda, Jens Bolten, Thorsten Wahlbrink, Michael Waldow, and Heinrich Kurz  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 25324-25332 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2366 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si3N4 strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width wWG show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)yyz increase with reduced wWG. For 300 nm wide waveguides a mean effective χ(2)yyz of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.

© 2013 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(160.2100) Materials : Electro-optical materials
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(190.0190) Nonlinear optics : Nonlinear optics
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Nonlinear Optics

Original Manuscript: August 20, 2013
Revised Manuscript: October 7, 2013
Manuscript Accepted: October 8, 2013
Published: October 16, 2013

Bartos Chmielak, Christopher Matheisen, Christian Ripperda, Jens Bolten, Thorsten Wahlbrink, Michael Waldow, and Heinrich Kurz, "Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides," Opt. Express 21, 25324-25332 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Schriever, C. Bohley, J. Schilling, and R. B. Wehrspohn, “Strained silicon photonics,” Materials5(12), 889–908 (2012). [CrossRef]
  2. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, and A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett.35(16), 2753–2755 (2010). [CrossRef] [PubMed]
  3. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express19(5), 3952–3961 (2011). [CrossRef] [PubMed]
  4. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express19(12), 11841–11851 (2011). [CrossRef] [PubMed]
  5. R. Palmer, L. Alloatti, D. Korn, P. C. Schindler, R. Schmogrow, M. Baier, S. Koenig, D. Hillerkuss, J. Bolten, T. Wahlbrink, M. Waldow, R. Dinu, W. Freude, C. Koos, and J. Leuthold, “Silicon-organic hybrid (SOH) modulator generating up to 84 Gbit/s BPSK and M-ASK signals,“ in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OW4J.6 (2013). [CrossRef]
  6. M. Wächter, C. Matheisen, M. Waldow, T. Wahlbrink, J. Bolten, M. Nagel, and H. Kurz, “Optical generation of terahertz and second-harmonic light in plasma-activated silicon nanophotonic structures,” Appl. Phys. Lett.97(16), 161107 (2010). [CrossRef]
  7. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006). [CrossRef] [PubMed]
  8. J. Fage-Pedersen, L. H. Frandsen, A. V. Lavrinenko, and P. I. Borel, “A linear electro-optic effect in silicon, induced by use of strain,” in 3rd IEEE International Conference on Group IV Photonics, 37–39 (2006).
  9. N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon – comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics, 232–234 (2009).
  10. N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically-Poled Silicon,” Appl. Phys. Lett.94(9), 091116 (2009). [CrossRef]
  11. I. Avrutsky and R. Soref, “Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility,” Opt. Express19(22), 21707–21716 (2011). [CrossRef] [PubMed]
  12. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater.11(2), 148–154 (2012). [CrossRef] [PubMed]
  13. F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol.27(8), 085009 (2012). [CrossRef]
  14. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express19(18), 17212–17219 (2011). [CrossRef] [PubMed]
  15. I. DeWolf, “Micro-raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol.11(2), 139–154 (1996). [CrossRef]
  16. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express16(21), 16659–16669 (2008). [CrossRef] [PubMed]
  17. G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol.21(9), 2010–2030 (2003). [CrossRef]
  18. M. Maeda and K. Ikeda, “Stress evaluation of radio-frequency-biased plasma-enhanced chemical vapor deposition silicon nitride films,” J. Appl. Phys.83(7), 3865 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited