OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25356–25363

Terahertz magnetoplasmon energy concentration and splitting in Graphene PN Junctions

Nima Chamanara, Dimitrios Sounas, Thomas Szkopek, and Christophe Caloz  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25356-25363 (2013)
http://dx.doi.org/10.1364/OE.21.025356


View Full Text Article

Enhanced HTML    Acrobat PDF (2025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Terahertz plasmons and magnetoplasmons propagating along electrically and chemically doped graphene p-n junctions are investigated. It is shown that such junctions support non-reciprocal magnetoplasmonic modes which get concentrated at the middle of the junction in one direction and split away from the middle of the junction in the other direction under the application of an external static magnetic field. This phenomenon follows from the combined effects of circular birefringence and carrier density non-uniformity. It can be exploited for the realization of plasmonic isolators.

© 2013 OSA

OCIS Codes
(000.3110) General : Instruments, apparatus, and components common to the sciences
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Plasmonics

History
Original Manuscript: August 8, 2013
Revised Manuscript: October 3, 2013
Manuscript Accepted: October 4, 2013
Published: October 17, 2013

Citation
Nima Chamanara, Dimitrios Sounas, Thomas Szkopek, and Christophe Caloz, "Terahertz magnetoplasmon energy concentration and splitting in Graphene PN Junctions," Opt. Express 21, 25356-25363 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25356


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science22 306, 666–669 (2004). [CrossRef]
  2. A. K.  Geim, K. S.  Novoselov, “The rise of graphene,” Nature Materials 6, 183–191 (2007). [CrossRef] [PubMed]
  3. A. N.  Grigorenko, M.  Polini, K. S.  Novoselov, “Graphene plasmonics,” Nat. Photon. 6, 7490 758 (2012). [CrossRef]
  4. S. A.  Mikhailov, K.  Ziegler, “New Electromagnetic Mode in Graphene,” Phys. Rev. Lett. 99, 016 803 (2007). [CrossRef]
  5. G. W.  Hanson, “Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064 302 (2008). [CrossRef]
  6. I.  Crassee, M.  Orlita, M.  Potemski, A. L.  Walter, M.  Ostler, T.  Seyller, I.  Gaponenko, J.  Chen, A. B.  Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Letters 12, 2470–2474 (2012). [CrossRef] [PubMed]
  7. A.  Vakil, N.  Engheta, “Transformation Optics Using Graphene,” Science 332, 1291–1294 (2011). [CrossRef] [PubMed]
  8. P. G.  Silvestrov, K. B.  Efetov, “Charge accumulation at the boundaries of a graphene strip induced by a gate voltage: Electrostatic approach,” Phys. Rev. B 77, 155 436 (2008). [CrossRef]
  9. E. G.  Mishchenko, A. V.  Shytov, P. G.  Silvestrov, “Guided Plasmons in Graphene p-n Junctions,” Phys. Rev. Lett. 104, 156 806 (2010). [CrossRef]
  10. S.  Thongrattanasiri, I.  Silveiro, F. J. G.  de Abajo, “Plasmons in electrostatically doped graphene,” Appl. Phys. Lett. 100, 201 105 (2012). [CrossRef]
  11. I.  Petković, F. I. B.  Williams, K.  Bennaceur, F.  Portier, P.  Roche, D. C.  Glattli, “Carrier Drift Velocity and Edge Magnetoplasmons in Graphene,” Phys. Rev. Lett. 110, 016 801 (2013). [CrossRef]
  12. T.  Echtermeyer, L.  Britnell, P.  Jasnos, A.  Lombardo, R.  Gorbachev, A.  Grigorenko, A.  Geim, A.  Ferrari, K.  Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011). [CrossRef] [PubMed]
  13. T.  Mueller, F.  Xia, P.  Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photon. 4, 297–301 (2010). [CrossRef]
  14. N. M.  Gabor, J. C. W.  Song, Q.  Ma, N. L.  Nair, T.  Taychatanapat, K.  Watanabe, T.  Taniguchi, L. S.  Levitov, P.  Jarillo-Herrero, “Hot carrierassisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011). [CrossRef] [PubMed]
  15. N.  Chamanara, D.  Sounas, C.  Caloz, “Non-reciprocal magnetoplasmon graphene coupler,” Opt. Express 21, 11248–11256 (2013). [CrossRef] [PubMed]
  16. D. L.  Sounas, C.  Caloz, “Edge surface modes in magnetically biased chemically doped graphene strips,” Appl. Phys. Lett. 99, 231 902:13 (2011). [CrossRef]
  17. Y.  Zhao, K.  Wu, K. M.  Cheng, “A Compact 2-D Full-Wave Finite-Difference Frequency-Domain Method for General Guided Wave Structures,” IEEE Trans. Microwave Theory Tech. 50, 1844–1848 (2002). [CrossRef]
  18. V. P.  Gusynin, S. G.  Sharapov, J. P.  Carbotte, “Magneto-optical conductivity in graphene,” Journal of Physics: Condensed Matter 19, 026 222 (2007). [CrossRef]
  19. V. P.  Gusynin, S. G.  Sharapov, J. P.  Carbotte, “On the universal ac optical background in graphene,” New Journal of Physics 11, 095 013 (2009). [CrossRef]
  20. D. M.  Pozar, Microwave engineering(Danvers, MA: Wiley, 2005), 3rd edn.
  21. D.  Jalas, A.  Petrov, M.  Eich, W.  Freude, S.  Fan, Z.  Yu, H.  Renner, “What is and what is not an optical isolator,” Nature Photonics 7, 579–582 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited