OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25389–25402

THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous wave source: proof of the concept

Masayuki Suga, Yoshiaki Sasaki, Takeshi Sasahara, Tetsuya Yuasa, and Chiko Otani  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25389-25402 (2013)
http://dx.doi.org/10.1364/OE.21.025389


View Full Text Article

Enhanced HTML    Acrobat PDF (4633 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we propose a THz computed tomography (CT) method based on phase contrast, which retrieves the phase shift information at each data point through a phase modulation technique using a Mach-Zehnder interferometer with a continuous wave (CW) source. The THz CT is based on first-generation CT, which acquires a set of projections by translational and rotational scans using a thin beam. From the phase-shift projections, we reconstruct a spatial distribution of refractive indices in a cross section of interest. We constructed a preliminary system using a highly coherent CW THz source with a frequency of 0.54 THz to prove the concept and performed an imaging experiment using phantoms to investigate its imaging features such as artifact-immune imaging, quantitative measurement, and selective detection.

© 2013 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(110.6795) Imaging systems : Terahertz imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Imaging Systems

History
Original Manuscript: June 6, 2013
Revised Manuscript: September 7, 2013
Manuscript Accepted: October 4, 2013
Published: October 17, 2013

Citation
Masayuki Suga, Yoshiaki Sasaki, Takeshi Sasahara, Tetsuya Yuasa, and Chiko Otani, "THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous wave source: proof of the concept," Opt. Express 21, 25389-25402 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25389


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  2. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys.29(2/3), 257–259 (2003). [CrossRef] [PubMed]
  3. R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt.47(16), 3023–3026 (2008). [CrossRef] [PubMed]
  4. T. Yasuda, T. Iwata, T. Araki, and T. Yasui, “Improvement of minimum paint film thickness for THz paint meters by multiple-regression analysis,” Appl. Opt.46(30), 7518–7526 (2007). [CrossRef] [PubMed]
  5. T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt.47(18), 3324–3327 (2008). [CrossRef] [PubMed]
  6. S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed-weapon identification,” Appl. Opt.47(9), 1286–1297 (2008). [CrossRef] [PubMed]
  7. Y. Kawada, T. Yasuda, H. Takahashi, and S.-i. Aoshima, “Real-time measurement of temporal waveforms of a terahertz pulse using a probe pulse with a tilted pulse front,” Opt. Lett.33(2), 180–182 (2008). [CrossRef] [PubMed]
  8. Y. Kawada, T. Yasuda, H. Takahashi, and S. Aoshima, “Real-time measurement of temporal waveforms of a terahertz pulse using a probe pulse with a tilted pulse front,” Opt. Lett.33(2), 180–182 (2008). [CrossRef] [PubMed]
  9. C. Kak and M. Slanery, “Principles of Computerized Tomographic Imaging,” New York: IEEE Press (1987).
  10. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett.22(12), 904–906 (1997). [CrossRef] [PubMed]
  11. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, “T-ray computed tomography,” Opt. Lett.27(15), 1312–1314 (2002). [CrossRef] [PubMed]
  12. S. Wang, B. Ferguson, and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D Appl. Phys.37(4), R1–R36 (2004). [CrossRef]
  13. E. Abraham, A. Younus, C. Aguerre, P. Desbarats, and P. Mounaix, “Refraction losses in terahertz computed tomography,” Opt. Commun.283(10), 2050–2055 (2010). [CrossRef]
  14. D. Porterfield, J. Hesler, T. Crowe, W. Bishop, and D. Woolard, “Integrated terahertz transmit / receive modules,” Proc. of 33rd European Microwave Conference, 1319–1322 (2003).
  15. A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt.43(30), 5637–5646 (2004). [CrossRef] [PubMed]
  16. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express19(6), 5105–5117 (2011). [CrossRef] [PubMed]
  17. N. Sunaguchi, Y. Sasaki, N. Maikusa, M. Kawai, T. Yuasa, and C. Otani, “Depth-resolving THz imaging with tomosynthesis,” Opt. Express17(12), 9558–9570 (2009). [CrossRef] [PubMed]
  18. J. Hsieh, Computed Tomography Principles, Design, Artifacts, and Recent Advances, Second Edition (John Wiley & Sons, Inc. & SPIE, 2009).
  19. S. Feng and H. G. Winful, “Physical origin of the Gouy phase shift,” Opt. Lett.26(8), 485–487 (2001). [CrossRef] [PubMed]
  20. A. Rosenfeld and C. Kak, Digital Picture Processing, 2nd Ed., Vol. I (Academic Press, 1982).
  21. R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt.34(5), 781–789 (1995). [CrossRef] [PubMed]
  22. G. Zhao, M. Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B19(6), 1476–1479 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited