OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25452–25466

Design and analysis of a silicon-based terahertz plasmonic switch

Mohammad Ali Khorrami and Samir El-Ghazaly  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 25452-25466 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a novel terahertz (THz) plasmonic switch is designed and simulated. The device consists of a periodically corrugated n-type doped silicon wafer covered with a metallic layer. Surface plasmon propagation along the structure is controlled by applying a control voltage onto the metal. As will be presented, the applied voltage can effectively alter the width of the depletion layer appeared between the deposited metal and the semiconductor. In this manner, the conductivity of the silicon substrate can be successfully controlled due to the absence of free electrons at the depleted sections. Afterwards, the effectiveness of the proposed plasmonic switch is enhanced by implementing a p++-type doped well beneath the metallic indentation edges. Consequently, a P-Intrinsic-N diode is formed which can manipulate the plasmon propagation by modifying the electron and hole densities inside the intrinsic area. The simulation results are explained very concisely by the help of scattering matrix formalism. Such a representation is essential as employing the switches in the design of complex plasmonic systems with many interacting parts.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(250.6715) Optoelectronics : Switching

ToC Category:

Original Manuscript: August 19, 2013
Revised Manuscript: September 29, 2013
Manuscript Accepted: October 7, 2013
Published: October 17, 2013

Mohammad Ali Khorrami and Samir El-Ghazaly, "Design and analysis of a silicon-based terahertz plasmonic switch," Opt. Express 21, 25452-25466 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Armstrong, “The truth about terahertz,” IEEE Spectr.49(9), 36–41 (2012). [CrossRef]
  2. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat Commun4, 1622 (2013). [CrossRef] [PubMed]
  3. W. F. Andress, H. Yoon, K. Y. M. Yeung, L. Qin, K. West, L. Pfeiffer, and D. Ham, “Ultra-subwavelength two-dimensional plasmonic circuits,” Nano Lett.12(5), 2272–2277 (2012). [CrossRef] [PubMed]
  4. T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Kanp, V. V. Popov, M. Ryzhii, and V. Ryzhii, “Emission and detaction of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene,” IEEE Trans. Terahertz Sci. & Technol.3(1), 63–71 (2013). [CrossRef]
  5. G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett.100(8), 083506 (2012). [CrossRef]
  6. M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Compact terahertz surface plasmon switch inside a two dimensional electron gas layer,” IEEE MTT-S Int. Microwave Symp. Dig.,Montreal, Canada, (2012). [CrossRef]
  7. M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Terahertz plasmon amplification using two dimensional electron-gas layers,” J. Appl. Phys.111(9), 094501 (2012). [CrossRef]
  8. M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, and H. Naseem, “Analytical modeling of THz wave propagation inside ungated two dimensional electron gas layers,” IEEE MTT-S Int. Microwave Symp. Dig.,Baltimore, USA (2011).
  9. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  10. S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007), pp. 93–100.
  11. L. Shen, X. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express16(5), 3326–3333 (2008). [CrossRef] [PubMed]
  12. B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys.104(10), 103531 (2008). [CrossRef]
  13. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater.9(9), 730–735 (2010). [CrossRef] [PubMed]
  14. G. Liang, H. Liang, Y. Zhang, S. P. Khanna, L. Li, A. G. Davies, E. Linfield, D. F. Lim, C. S. Tan, S. F. Yu, H. C. Liu, and Q. J. Wang, “Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers,” Appl. Phys. Lett.102(3), 031119 (2013). [CrossRef]
  15. V. Konoplev, A. R. Phipps, A. D. R. Pheps, C. W. Robertson, K. Ronald, and A. W. Cross, “Surface field excitation by an obliquely incident wave,” Appl. Phys. Lett.102(14), 141106 (2013). [CrossRef]
  16. J. Gomez Rivas, J. A. Sanchez-Gil, M. Kuttge, P. H. Bolivar, and H. Kurz, “Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces,” Phys. Rev. B74(24), 245324 (2006). [CrossRef]
  17. J. A. Sanchez-Gil and J. G. Rivas, “Thermal switching of the scattering coefficients of terahertz surface plasmon polaritons impinging on a finite array of subwavelength grooves on semiconductor surfaces,” Phys. Rev. B73(20), 205410 (2006). [CrossRef]
  18. E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B75(23), 235305 (2007). [CrossRef]
  19. K. Song and P. Mazmuder, “Active terahertz spoof surface plasmon polariton switch comprising the perfect conductor metamaterial,” IEEE Trans. on Elect. Devices56(11), 2792–2799 (2009). [CrossRef]
  20. Z. Xu, K. Song, and P. Mazumder, “Dynamic terahertz spoof surface plasmon-polariton switch based on resonance and absorption,” IEEE Trans. Electron. Dev.58(7), 2172–2176 (2011). [CrossRef]
  21. A. V. Krasavin and N. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett.84(8), 1416–1418 (2004).
  22. K. F. MacDoland, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009). [CrossRef]
  23. Y. Urzhumov, J. S. Lee, T. Tyler, S. Dhar, V. Nguyen, N. M. Jokerst, P. Schmalenberg, and D. R. Smith, “Electronically reconfigurable metal-on-silicon metamaterial,” Phys. Rev. B86(7), 075112 (2012). [CrossRef]
  24. Ansoft HFSS, Ansys Inc., Pittsburg, PA.
  25. C. A. Balanis, Advanced Engineering Electromagnetics, 1rd edition (John Wiley & Sons, 1989).
  26. Atlas User’s Manual, Silvaco, Santa Clara, CA, Jul. 2010.
  27. M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett.56(17), 1694–1696 (1990). [CrossRef]
  28. T. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett.78(6), 1106–1109 (1997). [CrossRef]
  29. C. C. Hu, Modern Semiconductor Devices for Integrated Circuits (Prentice Hall, 2010).
  30. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008). [CrossRef]
  31. J. S. Gómez-Díaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express21(13), 15490–15504 (2013). [CrossRef] [PubMed]
  32. P. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antenn. Propag.61(4), 1528–1537 (2013). [CrossRef]
  33. D. M. Pozar, Microwave Engineering, 3rd edition (John Wiley & Sons, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited