OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25501–25508

Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription

Thomas Calmano, Anna-Greta Paschke, Sebastian Müller, Christian Kränkel, and Günter Huber  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 25501-25508 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Straight and s-curve Yb(7%):YAG waveguides have been fabricated with the femtosecond laser writing technique. By employing a novel writing scheme an increase of the refractive index change could be achieved in comparison to waveguides written with the standard procedure. Straight waveguides, fabricated with this scheme, enabled highly efficient Ti:sapphire laser pumped waveguide lasers with slope efficiencies of 79% and output powers of more than 1 W. With slope efficiencies from 50% to 60% for the curved waveguide lasers with radii of curvature of R ≥ 20 mm the possibility of fs-laser written complex optical devices is demonstrated.

© 2013 OSA

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(140.3615) Lasers and laser optics : Lasers, ytterbium
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 6, 2013
Revised Manuscript: October 7, 2013
Manuscript Accepted: October 7, 2013
Published: October 17, 2013

Thomas Calmano, Anna-Greta Paschke, Sebastian Müller, Christian Kränkel, and Günter Huber, "Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription," Opt. Express 21, 25501-25508 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996). [CrossRef] [PubMed]
  2. R. G. Gatass and E. Mazur, “Femtosecond micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008). [CrossRef]
  3. E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater.34, 555–571 (2012). [CrossRef]
  4. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250 (2005). [CrossRef] [PubMed]
  5. G. A. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92, 111103 (2008). [CrossRef]
  6. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B100, 131–135 (2010). [CrossRef]
  7. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express18, 16035–16041 (2010). [CrossRef] [PubMed]
  8. Y. Tan, A. Ródenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4channel waveguide laser,” Opt. Express18, 24994–24999 (2010). [CrossRef] [PubMed]
  9. T. Calmano, J. Siebenmorgen, A.-G. Paschke, C. Fiebig, K. Paschke, G. Erbert, K. Petermann, and G. Huber, “Diode pumped high power operation of a femtosecond laser inscribed Yb:YAG waveguide laser [Invited],” Opt. Mater. Express1, 428–433 (2011). [CrossRef]
  10. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95, 85–96 (2009). [CrossRef]
  11. W.-J. Chen, S. M. Eaton, H Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express16, 11470–11480 (2008). [CrossRef] [PubMed]
  12. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003). [CrossRef]
  13. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett.30, 1060–1062 (2005). [CrossRef] [PubMed]
  14. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett.33, 956–958 (2008). [CrossRef] [PubMed]
  15. L. Qiao, F. He, C. Wang, Y. Cheng, K. Sugioka, and K. Midorikawa, “A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining,” Appl. Phys. A102, 179–183 (2011). [CrossRef]
  16. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Stat. Sol. A208, 276–283 (2011). [CrossRef]
  17. M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” IEEE J. Quantum Elect.11, 75–83 (1975). [CrossRef]
  18. R. W. Smink, B. P. de Hon, and A. G. Tijhuis, “Bending loss in optical fibers–a full-wave approach,” J. Opt. Soc. Am. B24, 2610–2618 (2007). [CrossRef]
  19. B. M. A. Rahman, D. M. H. Leung, S. S. A. Obayya, and K. T. V. Grattan, “Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling,” Appl. Opt.47, 2961–2970 (2008). [CrossRef] [PubMed]
  20. O. Svelto, Principles of Lasers (Plenum Press, New York, 1998), Chap. 7. [CrossRef]
  21. L. McCaughan and E. J. Murphy, “Influence of Temperature and Initial Titanium Dimensions on Fiber-Ti:LiNbO3Waveguide Insertion Loss at λ= 1.3 μm,” IEEE J. Quantum Electron.19, 131–136 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited