OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25544–25552

Effect of the finishing oil of acrylic fibers in the optical rotation of the Raman scattered light

I. Rosales-Candelas, J. J. Soto-Bernal, R. Gonzalez-Mota, and C. Frausto-Reyes  »View Author Affiliations

Optics Express, Vol. 21, Issue 21, pp. 25544-25552 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1097 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarized Raman spectra have been obtained from polyacrylonitrile copolymers fibers with vinyl acetate Poly(AN-co-VA), and methyl acrylate Poly(AN-co-MA) with finishing and without finishing, in order to show the effect of the finishing in the optical rotation of the Raman scattered light. The polarized Raman spectra were used to calculate the depolarization ratios for both fibers. These values reveal that there is antisymmetric Raman scattering in the form of anomalous depolarization for some bands due to a dipolar interaction between the polar headgroup of the finishing with the polar nitrile group of the fiber causing changes in the orientation of fiber polymer chains, or pseudo antisymmetric Raman scattering due to planar hydrocarbons of the oil finishing which are optically active and are aligned when they are applied to the acrylic fibers during the spinning process. Although the finishing should not affect the physical or chemical properties of the fibers, in this work is shown that the finishing could introduce optical activity in the different wavenumbers of the Raman signal and this effect is proportional to the finishing content. According to the results obtained in this work, Raman polarized spectroscopy can provide an express method to identify acrylic fibers with finishing and without finishing agents.

© 2013 OSA

OCIS Codes
(160.5470) Materials : Polymers
(300.6450) Spectroscopy : Spectroscopy, Raman
(310.5448) Thin films : Polarization, other optical properties

ToC Category:

Original Manuscript: July 15, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 16, 2013
Published: October 18, 2013

I. Rosales-Candelas, J. J. Soto-Bernal, R. Gonzalez-Mota, and C. Frausto-Reyes, "Effect of the finishing oil of acrylic fibers in the optical rotation of the Raman scattered light," Opt. Express 21, 25544-25552 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Rajvaidya, R. Bajpai, and A. K. Bajpai, “Preparation and characterization of hard and biocompatible interpenetrating polymer networks (IPNs) of gelatin and polyacrylonitrile,” J. Macromol. Sci. Pure.42(9), 1271–1285 (2005). [CrossRef]
  2. Y. H. Bang, S. Lee, and H. H. Cho, “Effect of methyl acrylate composition on the microstructure changes of high molecular weight polyacrylonitrile for heat treatment,” J. Appl. Polym. Sci.68(13), 2205–2213 (1998). [CrossRef]
  3. J. J. George and A. K. Bhowmick, “Influence of matrix polarity on the properties of ethylene vinyl acetate–carbon nanofiller nanocomposites,” Nanoscale Res. Lett.4(7), 655–664 (2009). [CrossRef] [PubMed]
  4. B. G. Frushour and R. S. Knorr, “Acrilic Fibers,” in Handbook of Fibers Chemistry, M. Lewin, ed. (CRC Press, 840–845, 2007).
  5. H. Wang, D. K. Graff, J. R. Schoonover, and R. A. Palmer, “Static and dynamic infrared linear dichroic study of a polyester/polyurethane copolymer using step-scan FT-IR and a photoelastic modulator,” Appl. Spectrosc.53(6), 687–696 (1999). [CrossRef]
  6. S. F. Fennessey and R. J. Farris, “Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns,” Polymer (Guildf.)4, 54217–54225 (2004).
  7. W. E. Morton and J. W. S. Hearle, Physical Properties of Textile Fibres (Textile Institute: Heinemann, 1993), Chap 22.
  8. J. I. Kroschwitz, “Polymers Fibers and Textiles, a Compendium,” in Encyclopedia Reprint Series J. (Wiley & Sons, 1990).
  9. M. S. Silverstein, Y. Najary, Y. Lumelsky, I. von Lampe, G. S. Grader, and G. E. Shet, “Complex formation and degradation in poly(acrylonitrile-co-vinyl acetate) containing metal nitrates,” Polymer (Guildf.)45(3), 937–947 (2004). [CrossRef]
  10. V. Causin, C. Marega, S. Schiavone, and A. Marigo, “A quantitative differentiation method for acrylic fibers by infrared spectroscopy,” Forensic Sci. Int.151(2-3), 125–131 (2005). [CrossRef] [PubMed]
  11. L. S. Wan, Z. K. Xu, X. J. Huang, Z. G. Wang, and J. L. Wang, “Copolymerization of acrylonitrile with N-vinyl-2-pyrrolidone to improve the hemocompatibility of polyacrylonitrile,” Polymer (Guildf.)46(18), 7715–7723 (2005). [CrossRef]
  12. A. K. Jahn and J. Williamsburg, Finish for Acrylic Fibers, US Patent 4,072, 617 (1978).
  13. Q. Fan, “Analysis of Chemical Used in Fibre Finishing,” in Chemical Texting of Textiles, Q. Fan, ed. (The Textile Institute, CRC Press, 2005).
  14. T. J. Proffitt and H. T. Patterson, “Oleochemical suffactants and lubricants in the textile industry,” J. Am. Oil Chem. Soc.65(10), 1682–1694 (1988). [CrossRef]
  15. V. D. Vasil'eva, V. E. Derbisher, I. Y. Kovalets, T. P. Aleinikova, and E. V. Derbisher, “Synthesis of polymeric peroxides and their Use in finishing treatment of textile materials,” Russ. J. Appl. Chem.80(8), 1409–1412 (2007). [CrossRef]
  16. M. Parvinzadeh, “The effects of softeners on the properties of sulfur-dyed cotton fibers,” J. Surfact. Deterg.10(4), 219–223 (2007). [CrossRef]
  17. H. Y. Ki, J. H. Kim, S. C. Kwon, and S. H. Jeong, “A study on multifunctional wool textiles treated with nano-sized silver,” J. Mater. Sci.42(19), 8020–8024 (2007). [CrossRef]
  18. A. Yadav, V. Prasad, A. A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, and N. Vigneshwaran, “Functional finishing in cotton fabrics using zinc oxide nanoparticles,” Bull. Mater. Sci.29(6), 641–645 (2006). [CrossRef]
  19. C. Hou, R. Qu, L. Ying, and C. Wang, “Effect of comonomers on finishing behavior of carbon fiber precursors,” J. Polym. Res.12(4), 313–316 (2005). [CrossRef]
  20. A. Riva, I. M. Algaba, and M. Pepio, “Action of a finishing product in the improvement of the ultraviolet protection provided by cotton fabrics. Modelisation of the effect,” Cellulose13(6), 697–704 (2006). [CrossRef]
  21. M. Blanco and J. Pagès, “Classification and quantitation of finishing oils by near infrared spectroscopy,” Anal. Chim. Acta463(2), 295–303 (2002). [CrossRef]
  22. U. Reinehr, R. B. Hirsh, J. Dross, and H. F. Jungverdorben, “Process for wetting thread bundless with liquids,” US Patent 4,842,793 (1989).
  23. V. Presser, B. E. Schuster, M. B. Casu, U. Heinemeyer, and F. Schreiber, “Raman polarization studies of highly oriented organic thin films,” J. Raman Spectrosc.40(12), 2015–2022 (2009). [CrossRef]
  24. V. L. Murphy and B. Kahr, “Planar Hydrocarbons More Optically Active Than Their Isomeric Helicenes,” J. Am. Chem. Soc.133(33), 12918–12921 (2011). [CrossRef] [PubMed]
  25. L. Hecht and L. A. Nafie, “Linear polarization Raman optical activity: a new form of natural optical activity,” Chem. Phys. Lett.174(6), 575–582 (1990). [CrossRef]
  26. L. D. Barron, “An Introduction to Chirality at the Nanoscale” in Chirality at the Nanoscale: Nanoparticles, Surfaces, Materials and More, D. B. Amabilino ed. (Wiley-VCH Verlag GmbH & Co. KGaA, 2009).
  27. C. D. Allemand, “Depolarization ratio measurements in Raman spectrometry,” Appl. Spectrosc.24(3), 348–353 (1970). [CrossRef]
  28. I. W. Shepherd, “Raman polarization techniques in the study of macromolecules,” in Advances in Infrared and Raman Spectroscopy, R. E. Hester, R. J. H. Clark, ed. (Heyden & Son, 1977), Chap 4.
  29. J. Štokr, B. Schneider, D. Doskočilová, J. Lövy, and P. Sedláček, “Conformational structure of poly(ethylene terephthalate). Infra-red, Raman and n.m.r. spectra,” Polymer (Guildf.)23(5), 714–721 (1982). [CrossRef]
  30. D. I. Bower, “Investigation of molecular orientation distributions by polarized Raman scattering and polarized fluorescence,” J. Polym. Sci., Part B: Polym. Phys.10(11), 2135–2153 (1972). [CrossRef]
  31. S. Frisk, R. M. Ikeda, D. B. Chase, and J. F. Rabolt, “Determination of the molecular orientation of poly(propylene terephthalate) fibers using polarized Raman spectroscopy: A comparison of methods,” Appl. Spectrosc.58(3), 279–286 (2004). [CrossRef] [PubMed]
  32. D. P. Strommen, “Specific values of the depolarization ratio in Raman spectroscopy,” J. Chem. Educ.69(10), 803–807 (1992). [CrossRef]
  33. T. Lefèvre, M. E. Rousseau, and M. Pézolet, “Determination of molecular orientation in protein films and fibers by Raman microspectroscopy,” Can. J. Anal. Sci. Spectrosc.50, 41–48 (2004).
  34. M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B114(31), 10200–10208 (2010). [CrossRef] [PubMed]
  35. G. Y. Nikolaeva, L. E. Semenova, K. A. Prokhorov, and S. A. Gordeyev, “Quantitative characterization of macromolecules orientation,” Laser Phys.7(2), 403–415 (1997).
  36. G. Turrel, M. Delhaye, and P. Dhamelincourt, Raman microscopy developments and applications, (Academic Press, 1996).
  37. G. Turrell, “Raman Sampling,” in Practical Raman Spectroscopy, D. J. Gardiner, P. R. Graves, ed. (Springer Verlag, 1989).
  38. B. Mehta and M. Mehta, Organic Chemistry, 1st ed. (Prentice Hall of India Pvt Ltd, 2005).
  39. K. Claborn, C. Isborn, W. Kaminsky, and B. Kahr, “Optical rotation of achiral compounds,” Angew. Chem. Int. Ed. Engl.47(31), 5706–5717 (2008). [PubMed]
  40. R. Perez-Pueyo, M. J. Soneira, and S. Ruiz-Moreno, “Morphology-based automated baseline removal for Raman spectra of artistic pigments,” Appl. Spectrosc.64(6), 595–600 (2010). [CrossRef] [PubMed]
  41. L. L. Cho, “Identification of textile fiber by Raman microspectroscopy,” Forensic Science Journal6(1), 55–62 (2007).
  42. T. G. Spiro and T. C. Strekas, “Resonance Raman spectra of hemoglobin and cytochrome c: inverse polarization and vibronic scattering,” Proc. Natl. Acad. Sci. U.S.A.69(9), 2622–2626 (1972). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited