OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25592–25606

Photonic-crystal structures with polarized-wave-guiding property and their applications in the mid and far infrared wave bands

Xin Jin, Maurice Sesay, Zhengbiao Ouyang, Qiang Liu, Mi Lin, Keyu Tao, and Dengguo Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25592-25606 (2013)
http://dx.doi.org/10.1364/OE.21.025592


View Full Text Article

Enhanced HTML    Acrobat PDF (5644 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystal (PhC) structures with polarized-wave-guiding property (PhC polarization waveguides) are proposed, demonstrated and applied to construct several new kinds of compact and efficient micro polarization devices in the mid and far infrared wave bands, including TE polarizers, TM polarizers, TE-downward T-shaped polarization-beam splitters (PBSs), TM-downward T-shaped PBSs and lying-T-shaped PBSs. Theoretical models for the operating mechanism of the structures are presented. The polarization devices built as applications of the PhC polarization waveguides are demonstrated by the finite-element method with the dispersion of materials being considered. Furthermore, optimized parameters are obtained by investigating the extinction ratio (EXR), the degree of polarization (DOP) and insertion loss. Moreover, structures based on PhC slabs derived from the 2D ones, together with woodpile PhC covers and substrates are suggested for the 3D version of the proposed devices for implementation. An example of the 3D-version structures shows a performance as good as that of the 2D structure. The devices proposed have relatively wide ranges of operating wavelength. Meanwhile, they are very compact in their structures and convenient for connection or coupling of signals among different optical elements, so they have the potential for wide applications in mid-and-far infrared optical devices or circuits, which are useful in remote sensing, image and vision, positioning and communications with infrared waves. Furthermore, the principle can be applied to build polarizers and PBSs in other wave bands.

© 2013 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: September 3, 2013
Revised Manuscript: October 9, 2013
Manuscript Accepted: October 9, 2013
Published: October 18, 2013

Citation
Xin Jin, Maurice Sesay, Zhengbiao Ouyang, Qiang Liu, Mi Lin, Keyu Tao, and Dengguo Zhang, "Photonic-crystal structures with polarized-wave-guiding property and their applications in the mid and far infrared wave bands," Opt. Express 21, 25592-25606 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25592


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Sun, J. Zhang, and Y. Zhao, “Laboratory studies of polarized light reflection from sea ice and lake ice in visible and near infrared,” IEEE Geosci. Remote Sens. Lett.10(1), 170–173 (2013). [CrossRef]
  2. Z. Chen, X. Wang, M. Zhang, R. Xia, and W. Jin, “Study of atmospheric effects on infrared polarization imaging system based on polarized Monte Carlo method,” Proc. SPIE.8512, 85120H1–14 (2012). [CrossRef]
  3. P. Majewska, M. Rospenk, B. Czarnik-Matusewicz, and L. Sobczyk, “Correlation between structure and shape of the polarized infrared absorption spectra of 4-chloro-2′-hydroxy-4′-alkyloxyazobenzenes,” J. Phys. Chem. B115(12), 2728–2736 (2011). [CrossRef] [PubMed]
  4. P. S. Erbach, J. L. Pezzaniti, J. Reinhardt, D. B. Chenault, D. H. Goldstein, and H. S. Lowry, “Component-level testing updates for the infrared polarized scene-generator demonstrator,” Proc. SPIE7663, 766307 (2010). [CrossRef]
  5. Q. Liu, Z. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, “All-optical half adder based on cross structures in two-dimensional photonic crystals,” Opt. Express16(23), 18992–19000 (2008). [CrossRef] [PubMed]
  6. A. Gadisa, E. Perzon, M. R. Andersson, and O. Inganas, “Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes,” Appl. Phys. Lett.90(11), 113510 (2007). [CrossRef]
  7. V. Ivanovski and V. M. Petruevski, “Infrared reflectance spectra of some optically biaxial crystals: On the origin of isosbestic-like points in the polarized reflectance spectra,” Spectrochimica Acta - Part A: Mol. and Biomol. Spectr.61(9), 2057–2063 (2005). [CrossRef]
  8. Y. Takano and K. N. Liou, “Transfer of polarized infrared radiation in optically anisotropic media: Application to horizontally oriented ice crystals,” J. Opt. Soc. Am. A10(6), 1243–1256 (1993). [CrossRef]
  9. W. G. Egan and M. J. Duggin, “Optical enhancement of aircraft detection using polarization,” Proc. SPIE4133, 172–178 (2000). [CrossRef]
  10. J. Zhang, J. Chen, B. Zou, and Y. Zhang, “Modeling and simulation of polarimetric hyperspectral imaging process,” IEEE Trans. Geosci. Rem. Sens.50(6), 2238–2253 (2012). [CrossRef]
  11. D. A. Lavigne, M. Breton, G. Fournier, M. Pichette, and V. Rivet, “A new passive polarimetric imaging system collecting polarization signatures in the visible and infrared bands,” Proc. SPIE7300, 730010 (2009). [CrossRef]
  12. D. B. Cavanaugh, K. R. Castle, and W. Davenport, “Anomaly detection using the hyperspectral polarimetric imaging testbed,” Proc. SPIE6233, 62331Q (2006). [CrossRef]
  13. P. Iordanou, E. G. Lykoudis, A. Athanasiou, E. Koniaris, M. Papaevangelou, T. Fatsea, and P. Bellou, “Effect of visible and infrared polarized light on the healing process of full-thickness skin wounds: An experimental study,” Photomed. Laser Surg.27(2), 261–267 (2009). [CrossRef] [PubMed]
  14. N. A. Wasley, I. J. Luxmoore, R. J. Coles, E. Clarke, A. M. Fox, and M. S. Skolnick, “Disorder-limited photon propagation and Anderson-localization in photonic crystal waveguides,” Appl. Phys. Lett.101(5), 051116 (2012). [CrossRef]
  15. A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photon. J.4(5), 1536–1541 (2012). [CrossRef]
  16. N. Cui, J. Liang, Z. Liang, Y. Ning, and W. Wang, “Submicron-scale spatial compression of light beam through two-stage photonic crystals spot-size converter,” Opt. Commun.285(16), 3453–3458 (2012). [CrossRef]
  17. D. Q. Yang, H. P. Tian, and Y. F. Ji, “High-bandwidth and low-loss photonic crystal power-splitter with parallel output based on the integration of Y-junction and waveguide bends,” Opt. Commun.285(18), 3752–3757 (2012). [CrossRef]
  18. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express13(19), 7699–7707 (2005). [CrossRef] [PubMed]
  19. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road From Theory to Practice (Springer, 2001).
  20. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  21. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  22. J. Wang and M. H. Qi, “Design of a compact mode and polarization converter in three-dimensional photonic crystals,” Opt. Express20(18), 20356–20367 (2012). [CrossRef] [PubMed]
  23. B. Chen, L. Huang, Y. D. Li, C. L. Liu, and G. Z. Liu, “Compact wavelength splitter based on self-imaging principles in Bragg reflection waveguides,” Appl. Opt.51(29), 7124–7129 (2012). [CrossRef] [PubMed]
  24. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett.31(21), 3104–3106 (2006). [CrossRef] [PubMed]
  25. J. Cai, G. P. Nordin, S. Kim, and J. Jiang, “Three-dimensional analysis of a hybrid photonic crystal-conventional waveguide 90 degree bend,” Appl. Opt.43(21), 4244–4249 (2004). [CrossRef] [PubMed]
  26. J. Jiang, J. Cai, G. P. Nordin, and L. Li, “Parallel microgenetic algorithm design for photonic crystal and waveguide structures,” Opt. Lett.28(23), 2381–2383 (2003). [CrossRef] [PubMed]
  27. J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “High-efficiency polarization beam splitter based on a self-collimating photonic crystal,” J. Opt. Soc. Am. B27(11), 2247–2254 (2010). [CrossRef]
  28. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett.32(5), 530–532 (2007). [CrossRef] [PubMed]
  29. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett.28(23), 2384–2386 (2003). [CrossRef] [PubMed]
  30. W. Zheng, M. Xing, G. Ren, S. G. Johnson, W. Zhou, W. Chen, and L. Chen, “Integration of a photonic crystal polarization beam splitter and waveguide bend,” Opt. Express17(10), 8657–8668 (2009). [CrossRef] [PubMed]
  31. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett.17(7), 1435–1437 (2005). [CrossRef]
  32. Y. R. Zhen and L. M. Li, “A novel application of two-dimensional photonic crystals: polarization beam splitter,” J. Phys. D Appl. Phys.38(18), 3391–3394 (2005). [CrossRef]
  33. J. J. Loferski, “Infrared optical properties of single crystals of tellurium,” Phys. Rev.93(4), 707–716 (1954). [CrossRef]
  34. P. A. Hartig and J. J. Loferski, “Infrared index of refraction of tellurium crystals,” J. Opt. Soc. Am.44(1), 17–18 (1954). [CrossRef]
  35. M. Bass, Handbook of Optics, 2nd edition, Vol. 2. New York: McGraw-Hill. (OSA, 1994). Chap. 33.
  36. P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express18(5), 5221–5228 (2010). [CrossRef] [PubMed]
  37. B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun.282(14), 2861–2869 (2009). [CrossRef]
  38. R. Proietti Zaccaria, P. Verma, S. Kawaguchi, S. Shoji, and S. Kawata, “Manipulating full photonic band gaps in two dimensional birefringent photonic crystals,” Opt. Express16(19), 14812–14820 (2008). [CrossRef] [PubMed]
  39. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94(3), 033903 (2005). [CrossRef] [PubMed]
  40. S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B81(2-3), 283–293 (2005). [CrossRef]
  41. R. Ramaswami, K. Sivarajan, and G. Sasaki, Optical Networks: A Practical Perspective (Morgan Kaufmann, 2009).
  42. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express13(18), 7145–7159 (2005). [CrossRef] [PubMed]
  43. Y. Xu, S. Wang, S. Lan, X. S. Lin, Q. Guo, and L. J. Wu, “Self-collimating polarization beam splitter based on photonic crystal Mach?Zehnder interferometer,” J. Opt. Soc. Am. B27(7), 1359–1363 (2010). [CrossRef]
  44. D. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express12(9), 1823–1831 (2004). [CrossRef] [PubMed]
  45. L. Shawn-Yu and J. G. Fleming, “A three-dimensional optical photonic crystal,” J. Lightwave Technol.17(11), 1944–1947 (1999). [CrossRef]
  46. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature394(6690), 251–253 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited