OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 21 — Oct. 21, 2013
  • pp: 25607–25618

Optical properties of excitons in metal-insulator-semiconductor nanowires

Jie-Yun Yan  »View Author Affiliations


Optics Express, Vol. 21, Issue 21, pp. 25607-25618 (2013)
http://dx.doi.org/10.1364/OE.21.025607


View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theoretical model for the metal-insulator-semiconductor nanowires is established and the optical properties are investigated. The linear absorption of the hybrid excitons, formed due to the exciton-plasmon interaction, shows obvious red shift on the magnitude of several meVs. The mechanism of the red shift is found to be the joint action of the increased excitonic binding energy attributed to the indirect Coulomb interaction and the decreased effective bandgap caused by the additional self-energy potential. The conclusion is also supported by the evolution of the absorption spectra with the adjustable structural parameters.

© 2013 OSA

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Plasmonics

History
Original Manuscript: September 12, 2013
Revised Manuscript: October 10, 2013
Manuscript Accepted: October 10, 2013
Published: October 18, 2013

Citation
Jie-Yun Yan, "Optical properties of excitons in metal-insulator-semiconductor nanowires," Opt. Express 21, 25607-25618 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-21-25607


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005). [CrossRef] [PubMed]
  2. S. M. Sadeghi and R. G. West, “Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys.: Condens. Matter23, 425302 (2011). [CrossRef]
  3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B76, 125308 (2007). [CrossRef]
  4. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett.97, 146804 (2006). [CrossRef] [PubMed]
  5. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B84, 081405 (2011). [CrossRef]
  6. H. T. Dung, L. Knoll, and D.-G. Welsch, “Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity,” Phys. Rev. A62, 053804 (2000). [CrossRef]
  7. G. S. Agarwal and S. V. ONeil, “Effect of hydrodynamic dispersion of the metal on surface plasmons and surface-enhanced phenomena in spherical geometries,” Phys. Rev. B28, 487–493 (1983). [CrossRef]
  8. V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Phys. Rev. A59, 2996–3014 (1999). [CrossRef]
  9. Y. He, C. Jiang, B. Chen, J.-J. Li, and K.-D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett.37, 2943–2945 (2012). [CrossRef] [PubMed]
  10. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett.89, 117401 (2002). [CrossRef] [PubMed]
  11. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett.6, 2622–2625 (2005). [CrossRef]
  12. J.-Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B77, 165301 (2008). [CrossRef]
  13. J.-Y. Yan, W. Zhang, S. Duan, and X. G. Zhao, “Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots,” J. Appl. Phys.103, 104314 (2008). [CrossRef]
  14. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced light-emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004). [CrossRef] [PubMed]
  15. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of Si quantum dots: simulation and experiment,” J. Phys. Chem. C111, 13372–13377 (2007). [CrossRef]
  16. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B60, 11564–11567 (1999). [CrossRef]
  17. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B66, 153305 (2002). [CrossRef]
  18. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006). [CrossRef] [PubMed]
  19. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett.99, 136802 (2007) [CrossRef] [PubMed]
  20. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and A. Atwater, “Plasmonics - a route to nanoscale optical devices,” Adv. Mater.13, 1501–1505 (2001). [CrossRef]
  21. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  22. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19, 22029–22106 (2011). [CrossRef] [PubMed]
  23. P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photon.1, 484–588 (2009). [CrossRef]
  24. R. D. Artuso, G. W. Bryant, A. Garcia-Etxarri, and J. Aizpurua, “Using local fields to tailor hybrid quantum-dot/metal nanoparticle systems,” Phys. Rev. B83, 235406 (2011). [CrossRef]
  25. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010). [CrossRef]
  26. M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett.99,181106 (2011). [CrossRef]
  27. A. O. Govorov, “Semiconductor-metal nanoparticle molecules in a magnetic field: spin-plasmon and exciton-plasmon interactions,” Phys. Rev. B82, 155322 (2010). [CrossRef]
  28. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B82,195419 (2010). [CrossRef]
  29. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011). [CrossRef] [PubMed]
  30. S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B79, 233309 (2009). [CrossRef]
  31. M.-T. Cheng, S.-D. Liu, H.-J. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett.32, 2125–2127 (2007). [CrossRef] [PubMed]
  32. M.-T. Cheng, S.-D. Liu, and Q.-Q. Wang, “Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod,” Appl. Phys. Lett.92, 162107 (2008). [CrossRef]
  33. A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett.7, 620–625 (2007). [CrossRef] [PubMed]
  34. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006). [CrossRef]
  35. D. E. Gómez, A. Roberts, T. J. Davis, and K. C. Vernon, “Surface plasmon hybridization and exciton coupling,” Phys. Rev. B86, 035411 (2012). [CrossRef]
  36. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)450, 402–406 (2007). [CrossRef]
  37. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano Lett.7, 2346–2350 (2007). [CrossRef] [PubMed]
  38. P. L. Hernández-Martínez and A. O. Govorov, “Exciton energy transfer between nanoparticles and nanowires,” Phys. Rev. B78, 035314 (2008). [CrossRef]
  39. I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: beyond the dipole approximation,” Opt. Express17, 17570–17581 (2009). [CrossRef] [PubMed]
  40. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton plasmon coupling in a J-aggregate Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11, 1556–1560 (2011). [CrossRef] [PubMed]
  41. J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, “Peptide-assembled optically responsive nanoparticle complexes,” Nano Lett.7, 1054–1058 (2007). [CrossRef] [PubMed]
  42. J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater.6, 291–295 (2007). [CrossRef] [PubMed]
  43. Q. Zhang, X.-Y. Shan, X. Feng, C.-X. Wang, Q.-Q. Wang, J.-F. Jia, and Q.-K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11, 4270–4274 (2011). [CrossRef] [PubMed]
  44. J.-Y. Yan, “Strong exciton-plasmon interaction in semiconductor-insulator-metal nanowires,” Phys. Rev. B86, 075438 (2012). [CrossRef]
  45. V. I. Sugakov and G. V. Vertsimakha, “Localized exciton states with giant oscillator strength in quantum well in vicinity of metallic nanoparticle,” Phys. Rev. B81, 235308 (2010). [CrossRef]
  46. H.-C. Wang, X.-Y. Yu, Y.-L. Chueh, T. Malinauskas, K. Jarasiunas, and S.-W. Feng, “Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample,” Opt. Express19, 18893–18902 (2011). [CrossRef] [PubMed]
  47. P. Vasa, R. Pomraenke, S. Schwieger, Yu. I. Mazur, Vas. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008). [CrossRef] [PubMed]
  48. Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” J. Am. Chem. Soc.129, 14939–14945 (2007). [CrossRef] [PubMed]
  49. E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, “Dielectrically enhanced excitons in semiconductor-insulator quantum wires: theory and experiment,” Phys. Rev. B62, 7420–7432 (2000). [CrossRef]
  50. L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys.80, 4403–4407 (1984). [CrossRef]
  51. S. Glutsch, D. S. Chemla, and F. Bechstedt, “Numerical calculation of the optical absorption in semiconductor quantum structures,” Phys. Rev. B54, 11592–11601 (1996). [CrossRef]
  52. J.-Y. Yan, “Theory of excitonic high-order sideband generation in semiconductors under a strong terahertz field,” Phys. Rev. B78, 075204 (2008). [CrossRef]
  53. J.-Y. Yan, R. B. Liu, and B. F. Zhu, “Exciton absorption in semiconductor superlattices in a strong longitudinal THz field,” New J. Phys.11, 083004 (2009). [CrossRef]
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  55. D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett.35, 4190–4192 (2010). [CrossRef] [PubMed]
  56. D. Handapangoda, M. Premaratne, I. D. Rukhlenko, and C. Jagadish, “Optimal design of composite nanowires for extended reach of surface plasmon-polaritons,” Opt. Express19, 16058–16074 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited