OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25632–25642

High resolution imaging with differential infrared absorption micro-spectroscopy

Isabel Pita, Nordine Hendaoui, Ning Liu, Mahendar Kumbham, Syed A. M. Tofail, André Peremans, and Christophe Silien  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25632-25642 (2013)
http://dx.doi.org/10.1364/OE.21.025632


View Full Text Article

Enhanced HTML    Acrobat PDF (1094 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although confocal infrared (IR) absorption micro-spectroscopy is well established for far-field chemical imaging, its scope remains restricted since diffraction limits the spatial resolution to values a little above half the radiation wavelength. Yet, the successful implementations of below-the-diffraction limit far-field fluorescence microscopies using saturated irradiation patterns for example for stimulated-emission depletion and saturated structured-illumination suggest the possibility of using a similar optical patterning strategy for infrared absorption mapping at high resolution. Simulations are used to show that the simple mapping of the difference in transmitted/reflected IR energy between a saturated vortex-shaped beam and a Gaussian reference with a confocal microscope affords the generation of high-resolution vibrational absorption images. On the basis of experimentally relevant parameters, the simulations of the differential absorption scheme reveal a spatial resolution better than a tenth of the wavelength for incident energies about a decade above the saturation threshold. The saturated structured illumination concepts are thus expected to be compatible with the establishment of point-like point-spread functions for measuring the absorbance of samples with a scanning confocal microscope recording the differential transmission/reflection.

© 2013 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Spectroscopy

History
Original Manuscript: May 22, 2013
Revised Manuscript: July 8, 2013
Manuscript Accepted: July 16, 2013
Published: October 21, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Isabel Pita, Nordine Hendaoui, Ning Liu, Mahendar Kumbham, Syed A. M. Tofail, André Peremans, and Christophe Silien, "High resolution imaging with differential infrared absorption micro-spectroscopy," Opt. Express 21, 25632-25642 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530(2011). [CrossRef] [PubMed]
  2. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507(2002). [CrossRef]
  3. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express16(20), 15863–15869(2008). [CrossRef] [PubMed]
  4. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812(2005). [CrossRef] [PubMed]
  5. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388(2010). [CrossRef] [PubMed]
  6. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D(2007). [CrossRef]
  7. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861(2008). [CrossRef] [PubMed]
  8. G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429(2011). [CrossRef] [PubMed]
  9. H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107(2011). [CrossRef] [PubMed]
  10. G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619(2001). [CrossRef]
  11. D. McNaughton, “Synchrotron infrared spectroscopy in biology and biochemistry,” Aust. Biochem.36, 55–58(2005).
  12. H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570(2009). [CrossRef] [PubMed]
  13. E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547(2008). [CrossRef] [PubMed]
  14. P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44(2007). [CrossRef] [PubMed]
  15. E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416(2008). [CrossRef] [PubMed]
  16. P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21(2003). [CrossRef]
  17. H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765(2010). [CrossRef] [PubMed]
  18. G. Ellis, G. Santoro, M. A. Gómez, and C. Marco, “Synchrotron IR microspectroscopy: opportunities in polymer science,” IOP Conf. Ser.: Mater. Sci. Eng. 14, 012019 (2010). [CrossRef]
  19. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416(2011). [CrossRef] [PubMed]
  20. G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58(1997). [CrossRef]
  21. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356(2011). [CrossRef] [PubMed]
  22. F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express19(21), 19942–19947(2011). [CrossRef] [PubMed]
  23. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137(1999). [CrossRef]
  24. S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609(2004). [CrossRef] [PubMed]
  25. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782(1994). [CrossRef] [PubMed]
  26. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210(2000). [CrossRef] [PubMed]
  27. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147(2009). [CrossRef]
  28. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43(2009). [CrossRef] [PubMed]
  29. E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001(2009). [CrossRef]
  30. S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497(1995). [CrossRef]
  31. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103(2007). [CrossRef] [PubMed]
  32. J. Kwon, Y. Lim, J. Jung, and S. K. Kim, “New sub-diffraction-limit microscopy technique: dual-point illumination AND-gate microscopy on nanodiamonds (DIAMOND),” Opt. Express20(12), 13347–13356(2012). [CrossRef] [PubMed]
  33. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086(2005). [CrossRef] [PubMed]
  34. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143(2012). [CrossRef] [PubMed]
  35. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796(2006). [CrossRef] [PubMed]
  36. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813(2008). [CrossRef] [PubMed]
  37. R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes,” Micron34(6-7), 293–300(2003). [CrossRef] [PubMed]
  38. O. Schwartz and D. Oron, “Using variable pupil filters to optimize the resolution in multiphoton and saturable fluorescence confocal microscopy,” Opt. Lett.34(4), 464–466(2009). [CrossRef] [PubMed]
  39. Y. Wang, C. Kuang, Z. Gu, and X. Liu, “Image subtraction method for improving lateral resolution and SNR in confocal microscopy,” Opt. Laser Technol.48, 489–494(2013). [CrossRef]
  40. O. Haeberlé and B. Simon, “Saturated structured confocal microscopy with theoretically unlimited resolution,” Opt. Commun.282(18), 3657–3664(2009). [CrossRef]
  41. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the Diffraction Barrier Using Fluorescence Emission Difference Microscopy,” Sci. Rep.3, 1441(2013). [CrossRef] [PubMed]
  42. W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638(2009). [CrossRef] [PubMed]
  43. W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507(2010). [CrossRef]
  44. C. Silien, N. Liu, N. Hendaoui, S. A. M. Tofail, and A. Peremans, “A framework for far-field infrared absorption microscopy beyond the diffraction limit,” Opt. Express20(28), 29694–29704(2012). [CrossRef] [PubMed]
  45. T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135(2004). [CrossRef]
  46. D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110(2009). [CrossRef] [PubMed]
  47. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371(2007). [CrossRef] [PubMed]
  48. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707(2010). [CrossRef]
  49. W. Demtroder, Laser spectroscopy: basic concepts and instrumentation(Springer-Verlag, 2003).
  50. D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293(1990). [CrossRef]
  51. A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438(1991). [CrossRef]
  52. H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991). [CrossRef]
  53. R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Europhys. Lett.30(7), 399–404(1995). [CrossRef]
  54. J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107(1998). [CrossRef]
  55. G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28(2008). [CrossRef]
  56. W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271(1980). [CrossRef]
  57. L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425(2000). [CrossRef]
  58. M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290(2002). [CrossRef]
  59. H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013(1991). [CrossRef]
  60. I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190(1999). [CrossRef]
  61. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87(2000). [CrossRef] [PubMed]
  62. L. Novotny and B. Hecht, Principles of nano-optics(Cambridge University Press, 2006).
  63. B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum.70(6), 2758–2764(1999). [CrossRef]
  64. F. K. Tittel, D. Richter, and A. Fried, “Mid-Infrared Laser Applications in Spectroscopy,” in Solid-State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds, Topics Appl. Phys. 89, 445-516 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited