OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25744–25751

Controllable chrominance and highly improved luminescent quantum yield of YV1-xPxO4: Tm, Dy, Eu inverse opal white light phosphors

Pingwei Zhou, Yongsheng Zhu, Wen Xu, Lin Xu, and Hongwei Song  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25744-25751 (2013)
http://dx.doi.org/10.1364/OE.21.025744


View Full Text Article

Enhanced HTML    Acrobat PDF (1593 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, rare earth (RE) ions tri-doped YV1-xPxO4: RE3+ (RE = Tm, Dy, Eu) inverse opal photonic crystals (IOPCs) were fabricated by the PMMA template method, which demonstrated efficient white light emissions under ultraviolet excitation. It is significant to observe that the chrominance of the white light could be largely modulated by the photonic stop band of the IOPCs. And more, the photoluminescence quantum yield in the IOPCs was largely improved over the grinded reference (REF) because the undesired energy transfer (ET) process was effectively restrained.

© 2013 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Optoelectronics

History
Original Manuscript: September 10, 2013
Revised Manuscript: October 3, 2013
Manuscript Accepted: October 4, 2013
Published: October 21, 2013

Citation
Pingwei Zhou, Yongsheng Zhu, Wen Xu, Lin Xu, and Hongwei Song, "Controllable chrominance and highly improved luminescent quantum yield of YV1-xPxO4: Tm, Dy, Eu inverse opal white light phosphors," Opt. Express 21, 25744-25751 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25744


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. A. Majumdar, J. Kim, J. Vuckovic, and F. Wang, “Electrical control of silicon photonic crystal cavity by graphene,” Nano Lett.13(2), 515–518 (2013). [CrossRef] [PubMed]
  4. N. Matsuda, H. Takesue, K. Shimizu, Y. Tokura, E. Kuramochi, and M. Notomi, “Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides,” Opt. Express21(7), 8596–8604 (2013). [CrossRef] [PubMed]
  5. F. Raineri, T. J. Karle, V. Roppo, P. Monnier, and R. Raj, “Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides,” Phys. Rev. A87(4), 041802 (2013). [CrossRef]
  6. V. Liu, D. A. B. Miller, and S. H. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express20(27), 28388–28397 (2012). [CrossRef] [PubMed]
  7. A. Hosseini, X. C. Xu, H. Subbaraman, C. Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express20(11), 12318–12325 (2012). [CrossRef] [PubMed]
  8. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett.36(17), 3413–3415 (2011). [CrossRef] [PubMed]
  9. K. Yoshino, S. B. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal,” Appl. Phys. Lett.73(24), 3506–3508 (1998). [CrossRef]
  10. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004). [CrossRef] [PubMed]
  11. A. Rodenas, G. Zhou, D. Jaque, and M. Gu, “Rare-earth spontaneous emission control in three-dimensional lithium niobate photonic crystals,” Adv. Mater.21(34), 3526–3530 (2009). [CrossRef]
  12. Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song, “Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application,” Appl. Phys. Lett.100(8), 081104 (2012). [CrossRef]
  13. Y. S. Zhu, Z. P. Sun, Z. Yin, H. W. Song, W. Xu, Y. F. Wang, L. G. Zhang, and H. Z. Zhang, “Self-assembly, highly modified spontaneous emission and energy transfer properties of LaPO4:Ce3+, Tb3+ inverse opals,” Dalton Trans.42(22), 8049–8057 (2013). [CrossRef] [PubMed]
  14. Q. Liu, H. W. Song, W. Wang, X. Bai, Y. Wang, B. Dong, L. Xu, and W. Han, “Observation of Lamb shift and modified spontaneous emission dynamics in the YBO3:Eu3+ inverse opal,” Opt. Lett.35(17), 2898–2900 (2010). [CrossRef] [PubMed]
  15. C. Blum, A. P. Mosk, I. S. Nikolaev, V. Subramaniam, and W. L. Vos, “Color control of natural fluorescent proteins by photonic crystals,” Small4(4), 492–496 (2008). [CrossRef] [PubMed]
  16. Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, S. Xu, and H. W. Song, “Inhibited long-scale energy transfer in dysprosium doped yttrium vanadate inverse opal,” J. Phys. Chem. C116(3), 2297–2302 (2012). [CrossRef]
  17. A. S. Osvaldo, A. C. Simone, and R. I. J. Renata, “A new procedure to obtain Eu3+ doped oxide and oxosalt phosphors,” Alloys Compd.303–304, 316–319 (2000).
  18. Y. H. Won, H. S. Jang, W. B. Im, D. Y. Jeon, and J. S. Lee, “Tunable full-color-emitting La0.827Al11.9O19.09: Eu2+,Mn2+ phosphor for application to warm white-light-emitting diodes,” Appl. Phys. Lett.89(23), 231909 (2006). [CrossRef]
  19. D. Gao, H. Zheng, X. Zhang, W. Gao, Y. Tian, J. Li, and M. Cui, “Luminescence enhancement and quenching by codopant ions in lanthanide doped fluoride nanocrystals,” Nanotechnology22(17), 175702 (2011). [CrossRef] [PubMed]
  20. C. H. Huang and T. M. Chen, “A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4:Ce3+,Mn2+,Tb3+ phosphor for UV-light emitting diodes,” J. Phys. Chem. C115(5), 2349–2355 (2011). [CrossRef]
  21. R. J. Wiglusz, A. Bednarkiewicz, and W. Strek, “Role of the sintering temperature and doping level in the structural and spectral properties of Eu-doped nanocrystalline YVO4.,” Inorg. Chem.51(2), 1180–1186 (2012). [CrossRef] [PubMed]
  22. M. Yu, J. Lin, Y. H. Zhou, M. L. Pang, X. M. Han, and S. B. Wang, “Luminescence properties of RP1−xVxO4: A (R=Y, Gd, La; A=Sm3+, Er3+x=0, 0.5, 1) thin films prepared by Pechini sol–gel process,” Thin Solid Films444(1-2), 245–253 (2003). [CrossRef]
  23. C. Lorbeer and A. V. Mudring, “White-light-emitting single phosphors via triply doped LaF3 nanoparticles,” J. Phys. Chem. C117(23), 12229–12238 (2013). [CrossRef]
  24. C. H. Lu and R. Jagannathan, “Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting,” Appl. Phys. Lett.80(19), 3608–3610 (2002). [CrossRef]
  25. G. von Freymann, V. Kitaev, B. V. Lotsch, and G. A. Ozin, “Bottom-up assembly of photonic crystals,” Chem. Soc. Rev.42(7), 2528–2554 (2013). [CrossRef] [PubMed]
  26. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett.78(17), 3294–3297 (1997). [CrossRef]
  27. L. P. Xie, H. W. Song, Y. Wang, W. Xu, X. Bai, and B. Dong, “Influence of concentration effect and Au coating on photoluminescence properties of YVO4:Eu3+ NPs colloids,” J. Phys. Chem. C114(21), 9975–9980 (2010). [CrossRef]
  28. H. Li, J. X. Wang, H. Lin, L. Xu, W. Xu, R. M. Wang, Y. L. Song, and D. B. Zhu, “Amplification of fluorescent contrast by photonic crystals in optical storage,” Adv. Mater.22(11), 1237–1241 (2010). [CrossRef] [PubMed]
  29. X. Wang, X. H. Yan, Y. Y. Bu, J. Zhen, and Y. Xuan, “Fabrication, photoluminescence, and potential application in white light emitting diode of Dy3+-Tm3+ doped transparent glass ceramics containing GdSr2F7 nanocrystals,” Appl. Phys., A Mater. Sci. Process.112(2), 317–322 (2013). [CrossRef]
  30. J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater.9(3), 230–232 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited