OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25796–25804

Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides

Myung-Ki Kim, Zheng Li, Kun Huang, Ryan Going, Ming C. Wu, and Hyuck Choo  »View Author Affiliations

Optics Express, Vol. 21, Issue 22, pp. 25796-25804 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2679 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a cladding engineering method that flexibly modifies the radiation patterns and rates of metal-clad nanoscale optical cavity. Optimally adjusting the cladding symmetry of the metal-clad nanoscale optical cavity modifies the modal symmetry and produces highly directional radiation that leads to 90% coupling efficiency into an integrated waveguide. In addition, the radiation rate of the cavity mode can be matched to its absorption rate by adjusting the thickness of the bottom-cladding layer. This approach optimizes the energy-flow rate from the waveguide and maximizes the energy confined inside the nanoscale optical cavity.

© 2013 Optical Society of America

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: June 5, 2013
Revised Manuscript: September 19, 2013
Manuscript Accepted: October 11, 2013
Published: October 22, 2013

Myung-Ki Kim, Zheng Li, Kun Huang, Ryan Going, Ming C. Wu, and Hyuck Choo, "Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides," Opt. Express 21, 25796-25804 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Razavi, Design of integrated circuits for optical communications (McGraw-Hill, New York, 2002).
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  3. L. Liao, A. Liu, J. Basak, H. Nguyen, M. Paniccia, D. Rubin, Y. Chetrit, R. Cohen, and N. Izhaky, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196 (2007). [CrossRef]
  4. S. Fama, L. Colace, G. Masini, G. Assanto, and H.-C. Luan, “High performance germanium-on-silicon detectors for optical communications,” Appl. Phys. Lett.81(4), 586–588 (2002). [CrossRef]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  6. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express15(11), 6744–6749 (2007). [CrossRef] [PubMed]
  7. D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, and J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express17(22), 20355–20364 (2009). [CrossRef] [PubMed]
  8. J. Van Campenhout, P. R. A. Binetti, P. R. Romeo, P. Regreny, C. Seassal, X. J. M. Leijtens, T. de Vries, Y. S. Oei, R. P. J. van Veldhoven, R. Notzel, L. É. Di Cioccio, J.-M. Fedeli, M. K. Smit, D. Van Thourhout, and R. Baets, “Low-Footprint Optical Interconnect on an SOI Chip Through Heterogeneous Integration of InP-Based Microdisk Lasers and Microdetectors,” IEEE Photon. Technol. Lett.21(8), 522–524 (2009). [CrossRef]
  9. G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010). [CrossRef]
  10. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006). [CrossRef]
  11. J. S. Orcutt, A. Khilo, M. A. Popovic, C. W. Holzwarth, B. Moss, and M. S. Hanqing Li, Dahlem, T.D. Bonifield, F.X. Kartner, E.P. Ippen, J.L. Hoyt, R.J. Ram, and V. Stojanovic, “Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk CMOS process,” Proc. Conf. Lasers and Electro-Optics (CLEO) (2008).
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  13. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  14. D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  15. H. T. Miyazaki and Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett.96(9), 097401 (2006). [CrossRef] [PubMed]
  16. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  17. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  18. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  19. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  20. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  21. M.-K. Kim, S. H. Lee, M. Choi, B.-H. Ahn, N. Park, Y.-H. Lee, and B. Min, “Low-loss surface-plasmonic nanobeam cavities,” Opt. Express18(11), 11089–11096 (2010). [CrossRef] [PubMed]
  22. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  23. J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express19(22), 21524–21531 (2011). [CrossRef] [PubMed]
  24. S.-H. Kim, J. Huang, and A. Scherer, “From vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers,” J. Opt. Soc. Am. B29(4), 577–588 (2012). [CrossRef]
  25. K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl.1(7), e20 (2012), doi:. [CrossRef]
  26. M.-K. Kim, A. M. Lakhani, and M. C. Wu, “Efficient waveguide-coupling of metal-clad nanolaser cavities,” Opt. Express19(23), 23504–23512 (2011). [CrossRef] [PubMed]
  27. K. Vahala, Optical Microcavities (World Scientific, Singapore, 2004).
  28. G.-H. Kim, Y.-H. Lee, A. Shinya, and M. Notomi, “Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode,” Opt. Express12(26), 6624–6631 (2004). [CrossRef] [PubMed]
  29. H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, New Jersey, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited