OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25874–25882

InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner

Sang-Pil Han, Hyunsung Ko, Jeong-Woo Park, Namje Kim, Young-Jong Yoon, Jun-Hwan Shin, Dae Yong Kim, Dong Hun Lee, and Kyung Hyun Park  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25874-25882 (2013)
http://dx.doi.org/10.1364/OE.21.025874


View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a terahertz (THz) broadband antenna-integrated 1 × 20 InGaAs Schottky barrier diode (SBD) array detector with an average responsivity of 98.5 V/W at a frequency of 250 GHz, which is measured without attaching external amplifiers and Si lenses, and an average noise equivalent power (NEP) of 106.6 pW/√Hz. The 3-dB bandwidth of the SBD detector is also investigated at approximately 180 GHz. For implementing an array-type SBD detector by a simple fabrication process to achieve a high yield, a structure comprising an SiNx layer instead of an air bridge between the anode and the cathode is designed. THz line beam imaging using a Gunn diode emitter with a center frequency of 250 GHz and a 1 × 20 SBD array detector is successfully demonstrated.

© 2013 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(110.0110) Imaging systems : Imaging systems
(110.2970) Imaging systems : Image detection systems
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Detectors

History
Original Manuscript: August 30, 2013
Revised Manuscript: September 28, 2013
Manuscript Accepted: October 2, 2013
Published: October 22, 2013

Citation
Sang-Pil Han, Hyunsung Ko, Jeong-Woo Park, Namje Kim, Young-Jong Yoon, Jun-Hwan Shin, Dae Yong Kim, Dong Hun Lee, and Kyung Hyun Park, "InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner," Opt. Express 21, 25874-25882 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25874


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. A. Rogalski and F. Sizov, “Terahertz detectors and focal plane arrays,” Opto-Electron. Rev.19(3), 346–404 (2011). [CrossRef]
  3. N. Oda, A. W. M. Lee, T. Ishi, I. Hosako, and Q. Hu, “Proposal for real-time terahertz imaging system, with palm-size terahertz camera and compact quantum cascade laser,” Proc. SPIE8363, 83630A (2012). [CrossRef]
  4. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett.86(5), 054105 (2005). [CrossRef]
  5. C. Sydlo, O. Cojocari, D. Schçnherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz62(5-6), 107–110 (2008). [CrossRef]
  6. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006). [CrossRef]
  7. R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS array and 860-GHz pixel,” IEEE J. Solid-St. Circulation99, 1–14 (2013).
  8. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express19(8), 7827–7832 (2011). [CrossRef] [PubMed]
  9. V. V. Popov, D. M. Ermolaev, K. V. Maremyanin, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, and S. Y. Shapoval, “High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array,” Appl. Phys. Lett.98(15), 153504 (2011). [CrossRef]
  10. U. V. Bhapkar, Y. Li, and R. J. Mattauch, “InGaAs-InP heteroepitaxial Schottky barrier diodes for terahertz applications,” Proc. ISSTT, 661–677 (1991).
  11. I. Oprea, A. Walber, O. Cojocari, H. Gibson, R. Zimmermann, and H. L. Hartnagel, “183 GHz mixer on InGaAs Schottky diodes,” Proc. ISSTT, 159–160 (2010).
  12. A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Device Lett.31(7), 674–676 (2010). [CrossRef]
  13. J. L. Hesler and T. W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors,” Proc. ISSTT, 89–92 (2007).
  14. J. L. Hesler, L. Liu, H. Xu, Y. Duan, and R. M. Weikle, “The development of quasi-optical THz detectors,” IRMMW-THz15–19(Sep), 1–2 (2008).
  15. N. Kim, Y. A. Leem, M. Y. Jeon, C. W. Lee, S.-P. Han, D. Lee, and K. H. Park, “Widely tunable 1.55 µm detuned dual mode laser diode for compact continuous-wave THz emitter,” ETRI J.33(5), 810–813 (2011). [CrossRef]
  16. N. Kim, H.-C. Ryu, D. Lee, S.-P. Han, H. Ko, K. Moon, J.-W. Park, M. Y. Jeon, and K. H. Park, “Monolithically integrated optical beat sources toward a single-chip broadband terahertz emitter,” Laser Phys. Lett.10(8), 085805 (2013). [CrossRef]
  17. S.-P. Han, H. Ko, N. Kim, H.-C. Ryu, C. W. Lee, Y. A. Leem, D. Lee, M. Y. Jeon, S. K. Noh, H. S. Chun, and K. H. Park, “Optical fiber-coupled InGaAs-based terahertz time-domain spectroscopy system,” Opt. Lett.36(16), 3094–3096 (2011). [CrossRef] [PubMed]
  18. S.-P. Han, N. Kim, H. Ko, H.-C. Ryu, J. W. Park, Y.-J. Yoon, J.-H. Shin, D. H. Lee, S.-H. Park, S.-H. Moon, S.-W. Choi, H. S. Chun, and K. H. Park, “Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection,” Opt. Express20(16), 18432–18439 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited