OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 22 — Nov. 4, 2013
  • pp: 25883–25889

200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA

Peh Siong Teh, Richard J. Lewis, Shaif-ul Alam, and David J. Richardson  »View Author Affiliations


Optics Express, Vol. 21, Issue 22, pp. 25883-25889 (2013)
http://dx.doi.org/10.1364/OE.21.025883


View Full Text Article

Enhanced HTML    Acrobat PDF (2018 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fully fiberized, single-polarization, gain-switched diode-seeded fiber master oscillator power amplifier (MOPA) system is demonstrated delivering 28ps pulses at variable repetition frequencies ranging from 53 MHz up to 858 MHz. An average signal output power of 200 W was achieved with good OSNR for all operating frequencies. A maximum pulse energy of 3.23 μJ at a repetition frequency of 53 MHz was achieved, corresponding to a pulse peak power of 107 kW. The extraction of higher pulse energy was limited primarily by the onset of nonlinear effects such as SRS which lead to compromised pulse quality at higher peak powers.

© 2013 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 20, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 7, 2013
Published: October 22, 2013

Citation
Peh Siong Teh, Richard J. Lewis, Shaif-ul Alam, and David J. Richardson, "200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA," Opt. Express 21, 25883-25889 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-22-25883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett.34(21), 3304–3306 (2009). [CrossRef] [PubMed]
  2. J. Griffiths, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Thermal laser micro-adjustment using picosecond pulse durations,” Appl. Surf. Sci.258(19), 7639–7643 (2012). [CrossRef]
  3. F. Kienle, P. S. Teh, D. Lin, S. U. Alam, J. H. V. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator,” Opt. Express20(7), 7008–7014 (2012). [CrossRef] [PubMed]
  4. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  5. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Topics Quantum Electron.1(1), 2–13 (1995). [CrossRef]
  6. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004). [CrossRef] [PubMed]
  7. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011). [CrossRef] [PubMed]
  8. R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, “157 W all-fiber high-power picosecond laser,” Appl. Opt.51(13), 2497–2500 (2012). [CrossRef] [PubMed]
  9. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett.18(9), 1013–1015 (2006). [CrossRef]
  10. G. Agrawal, “Nonlinear Fiber Optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, eds. (Springer Berlin Heidelberg, 2000), pp. 195–211.
  11. S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, “All-fiber based amplification of 40 ps pulses from a gain-switched laser diode,” Opt. Express19(3), 1854–1859 (2011). [CrossRef] [PubMed]
  12. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. At. Mol. Opt. Phys.38(9), S681–S693 (2005). [CrossRef]
  13. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express15(23), 15402–15409 (2007). [CrossRef] [PubMed]
  14. P. S. Teh, S.-u. Alam, H.-Y. Chan, D. P. Shepherd, and D. J. Richardson, “Generation of transform-limited picosecond pulses at 1.0µm from a gain switched semiconductor laser diode,” presented at the 4th IEEE International Conference on Photonics 2013, Malaysia, 28–30 Oct. 2013.
  15. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33(7), 1049–1056 (1997). [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  17. S. C. Pinault and M. J. Potasek, “Frequency broadening by self-phase modulation in optical fibers,” J. Opt. Soc. Am. B2(8), 1318–1319 (1985). [CrossRef]
  18. K. K. Chen, J. H. V. Price, S. U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, “Polarisation maintaining 100W Yb-fiber MOPA producing µJ pulses tunable in duration from 1 to 21 ps,” Opt. Express18(14), 14385–14394 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited